Chao Yuan , Shenghan Jin , Hongqiang Li , Zhongbin Liu , Jinqing Peng , Houpei Li
{"title":"Experimental study of R134a and its alternative mixture R450A flow boiling in a microchannel tube","authors":"Chao Yuan , Shenghan Jin , Hongqiang Li , Zhongbin Liu , Jinqing Peng , Houpei Li","doi":"10.1016/j.icheatmasstransfer.2024.108319","DOIUrl":null,"url":null,"abstract":"<div><div>R450A has a low Global Warming Potential, which is considered a replacement for R134a. This study measures the pressure gradient and heat transfer coefficient of both R134a and R450A during boiling in a multiport microchannel tube. The mass fluxes change from 100 to 200 kg-m<sup>−2</sup> s<sup>−1</sup>, heat fluxes from 2 to 4 kW-m<sup>−2</sup>, and inlet saturation temperatures from 10 to 30 °C. Both refrigerants exhibit increased HTC with rising vapor quality, peaking at moderate vapor qualities (0.4 to 0.6). R450A shows higher increase in heat transfer coefficient at higher heat fluxes compared to R134a. Heat transfer coefficient enhances about 75 % when mass flux doubled for both refrigerants. The pressure gradient increases with vapor quality for both refrigerants, with R450A showing higher dP/dz. due to its lower vapor density and saturation pressure at the same saturation temperature. Higher mass flux results in higher and steeper pressure gradient. Lower saturation temperatures increase the pressure gradient due to lower vapor density. Kim and Mudawar model and Mishima and Hibiki model are both recommend for predicting pressure gradient. Liu and Winterton has low MAE and ME when comparing the predictions to measurements in this study, showing it is a relatively accurate model for predicting HTC for both R134a and R450A.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"159 ","pages":"Article 108319"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193324010819","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
R450A has a low Global Warming Potential, which is considered a replacement for R134a. This study measures the pressure gradient and heat transfer coefficient of both R134a and R450A during boiling in a multiport microchannel tube. The mass fluxes change from 100 to 200 kg-m−2 s−1, heat fluxes from 2 to 4 kW-m−2, and inlet saturation temperatures from 10 to 30 °C. Both refrigerants exhibit increased HTC with rising vapor quality, peaking at moderate vapor qualities (0.4 to 0.6). R450A shows higher increase in heat transfer coefficient at higher heat fluxes compared to R134a. Heat transfer coefficient enhances about 75 % when mass flux doubled for both refrigerants. The pressure gradient increases with vapor quality for both refrigerants, with R450A showing higher dP/dz. due to its lower vapor density and saturation pressure at the same saturation temperature. Higher mass flux results in higher and steeper pressure gradient. Lower saturation temperatures increase the pressure gradient due to lower vapor density. Kim and Mudawar model and Mishima and Hibiki model are both recommend for predicting pressure gradient. Liu and Winterton has low MAE and ME when comparing the predictions to measurements in this study, showing it is a relatively accurate model for predicting HTC for both R134a and R450A.
期刊介绍:
International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.