Water vapor and soot spatial characteristics retrieve of axisymmetric optically-thin laminar diffusion flame based on visible and near-infrared multi-spectral light field imaging
Tianjiao Li , Yue Zhu , Weiyi Zhang , Bingkun Wu , Dong Liu
{"title":"Water vapor and soot spatial characteristics retrieve of axisymmetric optically-thin laminar diffusion flame based on visible and near-infrared multi-spectral light field imaging","authors":"Tianjiao Li , Yue Zhu , Weiyi Zhang , Bingkun Wu , Dong Liu","doi":"10.1016/j.icheatmasstransfer.2024.108328","DOIUrl":null,"url":null,"abstract":"<div><div>The comprehension of the distribution of gaseous species and soot particles plays a pivotal role in investigating the combustion process of a flame. A highly effective method to accomplish this is by extracting visible and near-infrared emission information from flames. In this study, we present a novel near-infrared multi-spectral light field imaging model that enables the concurrent extraction of gas and soot property distributions within a flame. A synthetic test of ethylene diffusion flame is assessed using the proposed reconstruction method. The mole fraction of gaseous water, together with the flame temperature and soot volume fraction, are decoupled spectrally using near-infrared and visible wavelengths. The results demonstrate a reliably retrieved temperature range of 1400 K to 2050 K, accurately reconstructing the actual distributions of soot volume fraction and gaseous water mole fraction. Minor influences on the imaging results and property reconstruction are observed due to uncertainties arising from the reconstruction method, absorption function, reconstruction wavelength for H<sub>2</sub>O mole fraction, and signal-to-noise ratio. This study serves as a theoretical guide for the future development of practical near-infrared multi-spectral light field imaging techniques for rapid and robust flame diagnostic purposes related to soot and gas properties.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"159 ","pages":"Article 108328"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S073519332401090X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The comprehension of the distribution of gaseous species and soot particles plays a pivotal role in investigating the combustion process of a flame. A highly effective method to accomplish this is by extracting visible and near-infrared emission information from flames. In this study, we present a novel near-infrared multi-spectral light field imaging model that enables the concurrent extraction of gas and soot property distributions within a flame. A synthetic test of ethylene diffusion flame is assessed using the proposed reconstruction method. The mole fraction of gaseous water, together with the flame temperature and soot volume fraction, are decoupled spectrally using near-infrared and visible wavelengths. The results demonstrate a reliably retrieved temperature range of 1400 K to 2050 K, accurately reconstructing the actual distributions of soot volume fraction and gaseous water mole fraction. Minor influences on the imaging results and property reconstruction are observed due to uncertainties arising from the reconstruction method, absorption function, reconstruction wavelength for H2O mole fraction, and signal-to-noise ratio. This study serves as a theoretical guide for the future development of practical near-infrared multi-spectral light field imaging techniques for rapid and robust flame diagnostic purposes related to soot and gas properties.
期刊介绍:
International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.