Analysis of bio-based epoxy resins: Impact of amine hardeners on thermal, thermomechanical, optical and electrical properties of epoxidized resveratrol with high Tg
Isaac Isarn , Ignacio Collado , Alberto Jiménez-Suárez , Silvia G. Prolongo
{"title":"Analysis of bio-based epoxy resins: Impact of amine hardeners on thermal, thermomechanical, optical and electrical properties of epoxidized resveratrol with high Tg","authors":"Isaac Isarn , Ignacio Collado , Alberto Jiménez-Suárez , Silvia G. Prolongo","doi":"10.1016/j.reactfunctpolym.2024.106080","DOIUrl":null,"url":null,"abstract":"<div><div>Epoxidized resveratrol (RES) has been cured with different amines in order to compare their possibilities to obtain high-temperature resistance of bio-based epoxy resins. Materials obtained from the bio-based monomer present glass transition temperatures (T<sub>g</sub>) among the highest ever reported for an epoxy-amine curing system, with extremely high char residue, making them excellent candidates for extremely high-temperature applications. Particularly, epoxidized RES stoichiometrically cured with 4,4′-sulfonyldianiline (DDS) reached 297 °C, measured as the tan <em>δ</em> peak by DMTA, and two other materials, using 4,4′-methylenedianiline (DDM) and 4,4′-diaminodicyclohexylmethane (CAA) as curing agents, exceeded 300 °C. In fact, the material begins to degrade before the chains are fully relaxed, so they are thermosetting that never go completely into the rubbery state. Additionally, this resin improves the direct current (DC) insulating character (∼10<sup>15</sup> Ωcm) while decreasing the optical band gap (∼2 eV) when compared to other epoxy resins available, which is of great interest for photovoltaic applications. Moreover, some of the materials presented a very high char residue proportion when heated (>40 wt% at 800 °C under nitrogen atmosphere), presenting good fire-retardant properties.</div></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":"205 ","pages":"Article 106080"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381514824002554","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Epoxidized resveratrol (RES) has been cured with different amines in order to compare their possibilities to obtain high-temperature resistance of bio-based epoxy resins. Materials obtained from the bio-based monomer present glass transition temperatures (Tg) among the highest ever reported for an epoxy-amine curing system, with extremely high char residue, making them excellent candidates for extremely high-temperature applications. Particularly, epoxidized RES stoichiometrically cured with 4,4′-sulfonyldianiline (DDS) reached 297 °C, measured as the tan δ peak by DMTA, and two other materials, using 4,4′-methylenedianiline (DDM) and 4,4′-diaminodicyclohexylmethane (CAA) as curing agents, exceeded 300 °C. In fact, the material begins to degrade before the chains are fully relaxed, so they are thermosetting that never go completely into the rubbery state. Additionally, this resin improves the direct current (DC) insulating character (∼1015 Ωcm) while decreasing the optical band gap (∼2 eV) when compared to other epoxy resins available, which is of great interest for photovoltaic applications. Moreover, some of the materials presented a very high char residue proportion when heated (>40 wt% at 800 °C under nitrogen atmosphere), presenting good fire-retardant properties.
期刊介绍:
Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers.
Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.