Dual-channel infrared OPO lidar optical system for remote sensing of greenhouse gases in the atmosphere: Design and characteristics

S.A. Sadovnikov, S.V. Yakovlev, N.S. Kravtsova, O.A. Romanovskii, D.A. Tuzhilkin
{"title":"Dual-channel infrared OPO lidar optical system for remote sensing of greenhouse gases in the atmosphere: Design and characteristics","authors":"S.A. Sadovnikov,&nbsp;S.V. Yakovlev,&nbsp;N.S. Kravtsova,&nbsp;O.A. Romanovskii,&nbsp;D.A. Tuzhilkin","doi":"10.1016/j.sintl.2024.100307","DOIUrl":null,"url":null,"abstract":"<div><div>Current global warming and climate change under the greenhouse effect call for a thorough understanding of the spatial distribution of greenhouse gases in different atmospheric layers. Lidar systems are the most effective for remote greenhouse gas monitoring. We design a two-channel infrared OPO lidar optical system for remote DIAL/DOAS sensing of carbon dioxide and water vapor in the atmosphere. In this work, optimal geometric parameters of the transceiving channel of the lidar optical system are chosen, a need to focus laser radiation at a distance of 1 km from an observation point is demonstrated, and numerical simulations confirm the possibility of detecting lidar signals ranging from 10<sup>−7</sup> to 10<sup>−10</sup> W in the informative spectral range 4800–5100 cm<sup>−1</sup> (1960–2083 nm). Laboratory experiments with the main components of the lidar system with experimentally confirmed parameters, which simulate atmospheric measurements of CO<sub>2</sub> absorption at a calibrated sensing wavelength of 2005 nm (4987 cm<sup>−1</sup>) (pressure of 1 atm; CO<sub>2</sub> concentration corresponding to the midlatitude summer background atmosphere) in the informative spectral range of the lidar system, enable selecting a pair of wavelengths with resonant absorption of the target gas near 2005 nm to study the background state of the atmosphere in the surface layer. Efficiency of the lidar optical system is confirmed by in situ test experiments, where backscattering signals from a topographic target with an albedo of ∼0.15 spaced 168 m apart from an observer are recorded at 60 mV when operating along a horizontal atmospheric path. The lidar system we design can be used in measuring complexes at carbon test sites. It can also be used for atmospheric monitoring in industrial centers, at background measuring stations, and in swamp areas.</div></div>","PeriodicalId":21733,"journal":{"name":"Sensors International","volume":"6 ","pages":"Article 100307"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors International","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666351124000299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current global warming and climate change under the greenhouse effect call for a thorough understanding of the spatial distribution of greenhouse gases in different atmospheric layers. Lidar systems are the most effective for remote greenhouse gas monitoring. We design a two-channel infrared OPO lidar optical system for remote DIAL/DOAS sensing of carbon dioxide and water vapor in the atmosphere. In this work, optimal geometric parameters of the transceiving channel of the lidar optical system are chosen, a need to focus laser radiation at a distance of 1 km from an observation point is demonstrated, and numerical simulations confirm the possibility of detecting lidar signals ranging from 10−7 to 10−10 W in the informative spectral range 4800–5100 cm−1 (1960–2083 nm). Laboratory experiments with the main components of the lidar system with experimentally confirmed parameters, which simulate atmospheric measurements of CO2 absorption at a calibrated sensing wavelength of 2005 nm (4987 cm−1) (pressure of 1 atm; CO2 concentration corresponding to the midlatitude summer background atmosphere) in the informative spectral range of the lidar system, enable selecting a pair of wavelengths with resonant absorption of the target gas near 2005 nm to study the background state of the atmosphere in the surface layer. Efficiency of the lidar optical system is confirmed by in situ test experiments, where backscattering signals from a topographic target with an albedo of ∼0.15 spaced 168 m apart from an observer are recorded at 60 mV when operating along a horizontal atmospheric path. The lidar system we design can be used in measuring complexes at carbon test sites. It can also be used for atmospheric monitoring in industrial centers, at background measuring stations, and in swamp areas.
用于大气温室气体遥感的双通道红外 OPO 激光雷达光学系统:设计与特点
当前全球变暖和温室效应下的气候变化要求我们全面了解不同大气层中温室气体的空间分布。激光雷达系统是最有效的温室气体远程监测系统。我们设计了一种双通道红外 OPO 激光雷达光学系统,用于远程 DIAL/DOAS 大气二氧化碳和水蒸气传感。在这项工作中,我们选择了激光雷达光学系统收发通道的最佳几何参数,论证了在距离观测点 1 千米处聚焦激光辐射的必要性,并通过数值模拟证实了在 4800-5100 厘米-1(1960-2083 纳米)的信息光谱范围内探测到 10-7 到 10-10 瓦激光雷达信号的可能性。在激光雷达系统的信息光谱范围内,用激光雷达系统的主要部件和经实验确认的参数进行了实验室实验,模拟了在 2005 nm(4987 cm-1)校准传感波长(压力为 1 atm;二氧化碳浓度相当于中纬度夏季背景大气)处对二氧化碳吸收的大气测量,从而能够选择 2005 nm 附近目标气体共振吸收的一对波长来研究表层大气的背景状态。激光雷达光学系统的效率在现场测试实验中得到了证实,当沿水平大气路径运行时,来自反照率为 0.15 的地形目标的后向散射信号在 60 mV 的电压下被记录下来,目标与观测者之间的距离为 168 m。我们设计的激光雷达系统可用于测量碳试验场的复合体。它还可用于工业中心、背景测量站和沼泽地区的大气监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信