Omar Zayed , Ghulam M. Mustafa , Fawziah Alhajri , G.I. Ameereh , Tariq M. Al-Daraghmeh , Bisma Younas , Majed Y. Almashnowi , N. Sfina , Q. Mahmood
{"title":"First principle study of electronic, optoelectronic, and thermoelectric properties of zintl phase alloys BaAg2X2 (X = S, Se, Te) for renewable energy","authors":"Omar Zayed , Ghulam M. Mustafa , Fawziah Alhajri , G.I. Ameereh , Tariq M. Al-Daraghmeh , Bisma Younas , Majed Y. Almashnowi , N. Sfina , Q. Mahmood","doi":"10.1016/j.jpcs.2024.112430","DOIUrl":null,"url":null,"abstract":"<div><div>Novel Zintl phases exhibiting promising thermoelectric properties have garnered considerable traction, largely attributed to the accuracy of computational estimates. In the present investigation, the density functional theory-based WIEN2k code is employed to analyze the structural, optoelectronic, and transport behavior of the BaAg<sub>2</sub>X<sub>2</sub> (X = S, Se, Te) Zintl phase. All these compositions belong to the stable trigonal phase with nominal expansion in the unit cell with the replacement of S with Se and Te. A negative value of enthalpy of formation of −2.30, −2.0, and −1.80 for BaAg<sub>2</sub>S<sub>2</sub>, BaAg<sub>2</sub>Se<sub>2</sub>, and BaAg<sub>2</sub>Te<sub>2</sub>, respectively, assures their thermodynamic stability. These compositions demonstrate dynamic stability, as evidenced by the nonexistence of negative (-ve) frequency values in their phonon spectra. Increasing the size of chalcogens enhances the spin-orbit coupling and reduces the bandgap value from 2.10 to 1.55 eV. The examination of optical response suggests that studied compositions display high absorption and low energy loss in the visible range, rendering them suitable for optoelectronic devices. The temperature-dependent transport behavior is computed using BoltzTrap code, and the RT value of power factor is recorded as 0.89 × 10<sup>11</sup>, 0.65 × 10<sup>11,</sup> and 0.54 × 10<sup>11</sup> Wm<sup>− 1</sup>K<sup>− 2</sup> for BaAg<sub>2</sub>X<sub>2</sub> (X = S, Se, Te). A high power factor value at elevated temperatures indicates the promising efficacy of studied compositions in thermoelectric device applications.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112430"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005651","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Novel Zintl phases exhibiting promising thermoelectric properties have garnered considerable traction, largely attributed to the accuracy of computational estimates. In the present investigation, the density functional theory-based WIEN2k code is employed to analyze the structural, optoelectronic, and transport behavior of the BaAg2X2 (X = S, Se, Te) Zintl phase. All these compositions belong to the stable trigonal phase with nominal expansion in the unit cell with the replacement of S with Se and Te. A negative value of enthalpy of formation of −2.30, −2.0, and −1.80 for BaAg2S2, BaAg2Se2, and BaAg2Te2, respectively, assures their thermodynamic stability. These compositions demonstrate dynamic stability, as evidenced by the nonexistence of negative (-ve) frequency values in their phonon spectra. Increasing the size of chalcogens enhances the spin-orbit coupling and reduces the bandgap value from 2.10 to 1.55 eV. The examination of optical response suggests that studied compositions display high absorption and low energy loss in the visible range, rendering them suitable for optoelectronic devices. The temperature-dependent transport behavior is computed using BoltzTrap code, and the RT value of power factor is recorded as 0.89 × 1011, 0.65 × 1011, and 0.54 × 1011 Wm− 1K− 2 for BaAg2X2 (X = S, Se, Te). A high power factor value at elevated temperatures indicates the promising efficacy of studied compositions in thermoelectric device applications.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.