Haowei Mu , Shanchuan Guo , Xingang Zhang , Bo Yuan , Zilong Xia , Pengfei Tang , Wei Zhang , Peng Zhang , Xuecao Li , Peijun Du
{"title":"Moving in the landscape: Omnidirectional connectivity dynamics in China from 1985 to 2020","authors":"Haowei Mu , Shanchuan Guo , Xingang Zhang , Bo Yuan , Zilong Xia , Pengfei Tang , Wei Zhang , Peng Zhang , Xuecao Li , Peijun Du","doi":"10.1016/j.eiar.2024.107721","DOIUrl":null,"url":null,"abstract":"<div><div>Habitat fragmentation poses a significant threat to intact ecosystems and the natural movements of species. However, research on functional connectivity that reflects the movement probability of widespread species across large spatiotemporal scale remains limited. To address this, we constructed omnidirectional connectivity in China from 1985 to 2020, using morphological spatial pattern analysis methods and circuit theory. In addition, we investigated the primary drivers of connectivity changes and explored conflicts with land cover changes. Our results demonstrated that overall omnidirectional connectivity is affected by the degree of fragmentation within landscape core areas. During this period, overall connectivity and landscape core area in China decreased by 1.2 % and 2.5 %, respectively, while the connectivity within core areas increased by 0.3 %. Forest reduction and cropland expansion were identified as the primary drivers of decreased connectivity in China. Forests, as crucial components of intact core areas, play a vital role in maintaining connectivity. Conversely, cropland expansion has exacerbated habitat fragmentation, leading to a decline in connectivity, particularly in the Southwest Basin. Additionally, connectivity in the Hai River Basin decreased due to an increase in impervious surface, whereas in the Continental Basin, it declined due to an expansion of barren land. Omnidirectional connectivity is crucial for maintaining intact ecosystems and provides a scientific foundation for spatial planning.</div></div>","PeriodicalId":309,"journal":{"name":"Environmental Impact Assessment Review","volume":"110 ","pages":"Article 107721"},"PeriodicalIF":9.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Impact Assessment Review","FirstCategoryId":"90","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195925524003081","RegionNum":1,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
Habitat fragmentation poses a significant threat to intact ecosystems and the natural movements of species. However, research on functional connectivity that reflects the movement probability of widespread species across large spatiotemporal scale remains limited. To address this, we constructed omnidirectional connectivity in China from 1985 to 2020, using morphological spatial pattern analysis methods and circuit theory. In addition, we investigated the primary drivers of connectivity changes and explored conflicts with land cover changes. Our results demonstrated that overall omnidirectional connectivity is affected by the degree of fragmentation within landscape core areas. During this period, overall connectivity and landscape core area in China decreased by 1.2 % and 2.5 %, respectively, while the connectivity within core areas increased by 0.3 %. Forest reduction and cropland expansion were identified as the primary drivers of decreased connectivity in China. Forests, as crucial components of intact core areas, play a vital role in maintaining connectivity. Conversely, cropland expansion has exacerbated habitat fragmentation, leading to a decline in connectivity, particularly in the Southwest Basin. Additionally, connectivity in the Hai River Basin decreased due to an increase in impervious surface, whereas in the Continental Basin, it declined due to an expansion of barren land. Omnidirectional connectivity is crucial for maintaining intact ecosystems and provides a scientific foundation for spatial planning.
期刊介绍:
Environmental Impact Assessment Review is an interdisciplinary journal that serves a global audience of practitioners, policymakers, and academics involved in assessing the environmental impact of policies, projects, processes, and products. The journal focuses on innovative theory and practice in environmental impact assessment (EIA). Papers are expected to present innovative ideas, be topical, and coherent. The journal emphasizes concepts, methods, techniques, approaches, and systems related to EIA theory and practice.