Decomposition on the degradation mechanism of the cathode catalyst layer under 1000 h of on-road heavy-duty transportation

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Caizheng Yue, Weibo Zheng, Yutao Lian, Jialun Kang, Siqi Chen, Xinyu Dong, Bing Li, Cunman Zhang, Pingwen Ming
{"title":"Decomposition on the degradation mechanism of the cathode catalyst layer under 1000 h of on-road heavy-duty transportation","authors":"Caizheng Yue,&nbsp;Weibo Zheng,&nbsp;Yutao Lian,&nbsp;Jialun Kang,&nbsp;Siqi Chen,&nbsp;Xinyu Dong,&nbsp;Bing Li,&nbsp;Cunman Zhang,&nbsp;Pingwen Ming","doi":"10.1016/j.est.2024.114426","DOIUrl":null,"url":null,"abstract":"<div><div>The lifespan of proton exchange membrane fuel cells in commercial vehicles is frequently constrained by the accelerated degradation of the cathode catalyst layer (CCL) under heavy-duty operational conditions. However, the determinant degradation mechanism of the CCL under on-road heavy-duty conditions remains uncertain. This study reveals the determinant degradation mechanism of the CCL under 1000 h of on-road heavy-duty transportation through multiple diagnostics and quantitative theoretical analysis. The results indicate that the ionomer migration is the fundamental drive of the fuel cell performance loss. The ionomer migration induces the detachment between the Pt catalyst and ionomer, reaching 37.3 % of the electrochemical surface area loss. The proton conduction process is primarily impeded by the discontinuous ionomer network within the CCL, resulting from ionomer migration. Furthermore, the migrating ionomer intrudes the primary pore region, thereby increasing the oxygen transport resistance to the Pt catalyst surface. Performance evolution indicates that the degraded CCL has the maximum power density loss of 42.5 % in comparison to the fresh CCL. The increase in activation and ohmic overpotentials contribute to 43.2 % and 36.5 % of the fuel cell performance loss, respectively. This study highlights the significance of inhibiting ionomer migration and provides a deeper insight into the degradation modes of CCL under on-road heavy-duty operations.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"104 ","pages":"Article 114426"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X2404012X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The lifespan of proton exchange membrane fuel cells in commercial vehicles is frequently constrained by the accelerated degradation of the cathode catalyst layer (CCL) under heavy-duty operational conditions. However, the determinant degradation mechanism of the CCL under on-road heavy-duty conditions remains uncertain. This study reveals the determinant degradation mechanism of the CCL under 1000 h of on-road heavy-duty transportation through multiple diagnostics and quantitative theoretical analysis. The results indicate that the ionomer migration is the fundamental drive of the fuel cell performance loss. The ionomer migration induces the detachment between the Pt catalyst and ionomer, reaching 37.3 % of the electrochemical surface area loss. The proton conduction process is primarily impeded by the discontinuous ionomer network within the CCL, resulting from ionomer migration. Furthermore, the migrating ionomer intrudes the primary pore region, thereby increasing the oxygen transport resistance to the Pt catalyst surface. Performance evolution indicates that the degraded CCL has the maximum power density loss of 42.5 % in comparison to the fresh CCL. The increase in activation and ohmic overpotentials contribute to 43.2 % and 36.5 % of the fuel cell performance loss, respectively. This study highlights the significance of inhibiting ionomer migration and provides a deeper insight into the degradation modes of CCL under on-road heavy-duty operations.
重型公路运输 1000 小时后阴极催化剂层降解机理的分解研究
由于阴极催化剂层(CCL)在重负荷运行条件下加速降解,商用车辆中质子交换膜燃料电池的使用寿命经常受到限制。然而,CCL 在公路重载条件下的决定性降解机制仍不确定。本研究通过多重诊断和定量理论分析,揭示了 CCL 在道路重载运输 1000 小时条件下的决定性降解机制。结果表明,离子膜迁移是导致燃料电池性能下降的根本原因。离子膜迁移导致铂催化剂与离子膜脱离,电化学表面积损失达到 37.3%。质子传导过程主要受到 CCL 中不连续的离子膜网络的阻碍,这是离子膜迁移的结果。此外,迁移的离子聚合物侵入了主孔区域,从而增加了铂催化剂表面的氧传输阻力。性能演变表明,与新鲜的 CCL 相比,降解的 CCL 功率密度损失最大,达到 42.5%。活化过电位和欧姆过电位的增加分别造成了 43.2% 和 36.5% 的燃料电池性能损失。这项研究强调了抑制离子体迁移的重要性,并使人们更深入地了解了 CCL 在公路重载运行条件下的降解模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信