Resistance distances in generalized join graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Shaohan Xu, Kexiang Xu
{"title":"Resistance distances in generalized join graphs","authors":"Shaohan Xu,&nbsp;Kexiang Xu","doi":"10.1016/j.dam.2024.11.013","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>H</mi></math></span> be a graph with vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span>. The generalized join graph <span><math><mrow><mi>H</mi><mrow><mo>[</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span> is obtained from <span><math><mi>H</mi></math></span> by replacing each vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> with a graph <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and joining each vertex in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> with each vertex in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> provided <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>. If every <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is an independent set of <span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> vertices, then we write <span><math><mrow><mi>H</mi><mrow><mo>[</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span> as <span><math><mrow><mi>H</mi><mrow><mo>[</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span>, which is called the blow-up of <span><math><mi>H</mi></math></span>. In this paper we introduce the local complement transformation in electrical networks and obtain an electrically equivalent graph of <span><math><mrow><mi>H</mi><mrow><mo>[</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span>. As their applications, we obtain formulae for resistance distances of some vertex-weighted graphs and give a unified technique to compute resistance distances in <span><math><mrow><mi>H</mi><mrow><mo>[</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span> when every <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> for <span><math><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></mrow></math></span> is a graph consisting of a matching and isolated vertices, which results in closed formulae for resistance distances of <span><math><mrow><mi>H</mi><mrow><mo>[</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span> when <span><math><mi>H</mi></math></span> are some given graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"362 ","pages":"Pages 18-33"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004839","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let H be a graph with vertex set V(H)={v1,v2,,vk}. The generalized join graph H[G1,G2,,Gk] is obtained from H by replacing each vertex vi with a graph Gi and joining each vertex in Gi with each vertex in Gj provided vivjE(H). If every Gi is an independent set of ni vertices, then we write H[G1,G2,,Gk] as H[n1,n2,,nk], which is called the blow-up of H. In this paper we introduce the local complement transformation in electrical networks and obtain an electrically equivalent graph of H[n1,n2,,nk]. As their applications, we obtain formulae for resistance distances of some vertex-weighted graphs and give a unified technique to compute resistance distances in H[G1,G2,,Gk] when every Gi for 1ik is a graph consisting of a matching and isolated vertices, which results in closed formulae for resistance distances of H[G1,G2,,Gk] when H are some given graphs.
广义连接图中的电阻距离
设 H 是顶点集 V(H)={v1,v2,...,vk} 的图。将每个顶点 vi 替换为一个图 Gi,并将 Gi 中的每个顶点与 Gj 中的每个顶点连接(条件是 vivj∈E(H)),就得到广义连接图 H[G1,G2,...,Gk]。如果每个 Gi 都是 ni 个顶点的独立集合,那么我们就把 H[G1,G2,...,Gk] 写成 H[n1,n2,...,nk],这就是所谓的 H 放大图。作为其应用,我们得到了一些顶点加权图的电阻距离公式,并给出了一种统一的技术来计算 H[G1,G2,...Gk] 中的电阻距离,当 1≤i≤k 的每个 Gi 都是由匹配顶点和孤立顶点组成的图时,从而得到了当 H 是一些给定图时 H[G1,G2,...Gk] 的电阻距离的封闭公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信