Md. Raton Ali, Tanvir Mahtab Khan, Nurjahan-Ara, Sheikh Rashel Al Ahmed
{"title":"Numerical simulation to optimize the photovoltaic performances of Cu2ZnSnS4 solar cell with Cu2NiSnS4 as hole transport layer","authors":"Md. Raton Ali, Tanvir Mahtab Khan, Nurjahan-Ara, Sheikh Rashel Al Ahmed","doi":"10.1016/j.jpcs.2024.112448","DOIUrl":null,"url":null,"abstract":"<div><div>Cu<sub>2</sub>ZnSnS<sub>4</sub> (CZTS) has been taken as an encouraging absorber material for photovoltaic (PV) device applications due to its earth-abundant composition, favorable bandgap, and non-toxicity. However, the recombination losses at both front and back interfaces in the heterojunction CZTS solar cells provide poor efficiency and open-circuit voltage (V<sub>oc</sub>). In this study, we have designed and investigated heterojunction CZTS-based solar cell employing Cu<sub>2</sub>NiSnS<sub>4</sub> (CNTS) as hole transport layer (HTL) and tungsten disulfide (WS<sub>2</sub>) as buffer layer. A novel solar cell structure of Ni/CNTS/CZTS/WS<sub>2</sub>/FTO/Al has been designed numerically by utilizing the one-dimensional solar cell capacitance simulator (SCAPS-1D). At first, we have verified an experimental structure (Mo/CZTS/CdS/ZnO) with conversion efficiency of 8.38 % without HTL numerically with the help of the SCAPS-1D simulator for the validation purposes. A comparison of the PV performances among different HTLs is provided. It is revealed that the addition of HTL at rear side of the CZTS cell minimizes the carrier recombination, thus improving the device outputs. Also, the lower lattice mismatch between the proposed CNTS HTL and CZTS absorber compared to other HTLs further results in better performances. In addition, a ‘spike like’ band orientation at the CZTS/WS<sub>2</sub> interface helps to increase PV outputs by reducing the carrier recombination loss. The output of proposed CZTS heterojunction TFSC is further examined by changing different parameters including thickness, doping concentration, bulk and interface defect densities, temperature, cell resistances, and metal work function. In this work, an optimized thickness for CZTS absorber is found to be 1.0 μm for the cost-effective PV device. A maximum efficiency of 30.26 % including V<sub>oc</sub> of 1.08 V, short-circuit current density (J<sub>sc</sub>) of 31.75 mA/cm<sup>2</sup>, and fill-factor (FF) of 88.04 % is achieved numerically. Therefore, these findings will help to researchers for designing Cd-free, low-cost, environmentally friendly, and highly efficient CZTS heterojunction TFSC.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112448"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005833","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cu2ZnSnS4 (CZTS) has been taken as an encouraging absorber material for photovoltaic (PV) device applications due to its earth-abundant composition, favorable bandgap, and non-toxicity. However, the recombination losses at both front and back interfaces in the heterojunction CZTS solar cells provide poor efficiency and open-circuit voltage (Voc). In this study, we have designed and investigated heterojunction CZTS-based solar cell employing Cu2NiSnS4 (CNTS) as hole transport layer (HTL) and tungsten disulfide (WS2) as buffer layer. A novel solar cell structure of Ni/CNTS/CZTS/WS2/FTO/Al has been designed numerically by utilizing the one-dimensional solar cell capacitance simulator (SCAPS-1D). At first, we have verified an experimental structure (Mo/CZTS/CdS/ZnO) with conversion efficiency of 8.38 % without HTL numerically with the help of the SCAPS-1D simulator for the validation purposes. A comparison of the PV performances among different HTLs is provided. It is revealed that the addition of HTL at rear side of the CZTS cell minimizes the carrier recombination, thus improving the device outputs. Also, the lower lattice mismatch between the proposed CNTS HTL and CZTS absorber compared to other HTLs further results in better performances. In addition, a ‘spike like’ band orientation at the CZTS/WS2 interface helps to increase PV outputs by reducing the carrier recombination loss. The output of proposed CZTS heterojunction TFSC is further examined by changing different parameters including thickness, doping concentration, bulk and interface defect densities, temperature, cell resistances, and metal work function. In this work, an optimized thickness for CZTS absorber is found to be 1.0 μm for the cost-effective PV device. A maximum efficiency of 30.26 % including Voc of 1.08 V, short-circuit current density (Jsc) of 31.75 mA/cm2, and fill-factor (FF) of 88.04 % is achieved numerically. Therefore, these findings will help to researchers for designing Cd-free, low-cost, environmentally friendly, and highly efficient CZTS heterojunction TFSC.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.