Comprehensive analysis of the synthesized Zinc-doped yttrium titanate pyrochlore solid solution: Structural, vibrational, and electrochemical insights

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Brahim Arfoy , Mohamed Douma , El Hossain Chtoun , Oualid El Haddade , Ibrahim El Allaoui , Mohammad El Mourabit , Leila Loubbidi
{"title":"Comprehensive analysis of the synthesized Zinc-doped yttrium titanate pyrochlore solid solution: Structural, vibrational, and electrochemical insights","authors":"Brahim Arfoy ,&nbsp;Mohamed Douma ,&nbsp;El Hossain Chtoun ,&nbsp;Oualid El Haddade ,&nbsp;Ibrahim El Allaoui ,&nbsp;Mohammad El Mourabit ,&nbsp;Leila Loubbidi","doi":"10.1016/j.jpcs.2024.112440","DOIUrl":null,"url":null,"abstract":"<div><div>A novel Zinc-doped Yttrium Titanate (YTZ) solid solution with a pyrochlore structure, synthesized via a solid-state route, was investigated for its potential in hydrogen storage applications. Comprehensive characterization using various techniques confirmed the formation of a cubic crystal structure with the Fd-3m space group for compositions within the ZnO content range from x = 0 to 0.30. A subtle increase in the lattice parameter (a) was observed with increasing substitution levels (x). This increase is attributed to the substitution of Zn<sup>2+</sup> on Ti<sup>4+</sup> sites and the concomitant creation of vacancies in both the anionic and cationic sublattices, as revealed by quantitative Rietveld analysis. The YTZ solid solution exhibits semiconducting behavior with a band gap ranging from 3.10 to 3.25 eV that may contribute to its hydrogen storage properties. Notably, the YTZ<sub>0.25</sub> composition displayed a remarkable hydrogen storage capacity of 1200 mAh/g. This can be attributed to the presence of active redox species, favorable morphology, and the structural vacancies introduced by Zn<sup>2+</sup> substitution, which facilitate hydrogen interaction. These findings position YTZ solid solution as a promising candidate for clean energy technologies, particularly in the realm of hydrogen storage.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112440"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005754","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel Zinc-doped Yttrium Titanate (YTZ) solid solution with a pyrochlore structure, synthesized via a solid-state route, was investigated for its potential in hydrogen storage applications. Comprehensive characterization using various techniques confirmed the formation of a cubic crystal structure with the Fd-3m space group for compositions within the ZnO content range from x = 0 to 0.30. A subtle increase in the lattice parameter (a) was observed with increasing substitution levels (x). This increase is attributed to the substitution of Zn2+ on Ti4+ sites and the concomitant creation of vacancies in both the anionic and cationic sublattices, as revealed by quantitative Rietveld analysis. The YTZ solid solution exhibits semiconducting behavior with a band gap ranging from 3.10 to 3.25 eV that may contribute to its hydrogen storage properties. Notably, the YTZ0.25 composition displayed a remarkable hydrogen storage capacity of 1200 mAh/g. This can be attributed to the presence of active redox species, favorable morphology, and the structural vacancies introduced by Zn2+ substitution, which facilitate hydrogen interaction. These findings position YTZ solid solution as a promising candidate for clean energy technologies, particularly in the realm of hydrogen storage.

Abstract Image

全面分析合成的锌掺杂钛酸钇热长石固溶体:结构、振动和电化学见解
研究人员通过固态路线合成了一种具有热长石结构的新型锌掺杂钛酸钇(YTZ)固溶体,并对其在储氢应用中的潜力进行了研究。利用各种技术进行的综合表征证实,在氧化锌含量为 x = 0 至 0.30 的范围内,形成了具有 Fd-3m 空间群的立方晶体结构。随着替代水平(x)的增加,晶格参数(a)也出现了微妙的增长。正如里特维尔德定量分析所揭示的那样,这种增加归因于 Zn2+ 在 Ti4+ 位点上的取代以及阴离子和阳离子亚晶格中随之产生的空位。YTZ 固溶体表现出半导体行为,其带隙范围为 3.10 至 3.25 eV,这可能有助于其储氢特性。值得注意的是,YTZ0.25 成分的储氢能力高达 1200 mAh/g。这可归因于活性氧化还原物种的存在、良好的形貌以及 Zn2+ 取代引入的结构空位,这些都有利于氢相互作用。这些发现将 YTZ 固溶体定位为清洁能源技术,尤其是储氢领域的一种前景广阔的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信