Franz M. Rohrhofer , Stefan Posch , Clemens Gößnitzer , Bernhard C. Geiger
{"title":"Approximating families of sharp solutions to Fisher's equation with physics-informed neural networks","authors":"Franz M. Rohrhofer , Stefan Posch , Clemens Gößnitzer , Bernhard C. Geiger","doi":"10.1016/j.cpc.2024.109422","DOIUrl":null,"url":null,"abstract":"<div><div>This paper employs physics-informed neural networks (PINNs) to solve Fisher's equation, a fundamental reaction-diffusion system with both simplicity and significance. The focus is on investigating Fisher's equation under conditions of large reaction rate coefficients, where solutions exhibit steep traveling waves that often present challenges for traditional numerical methods. To address these challenges, a residual weighting scheme is introduced in the network training to mitigate the difficulties associated with standard PINN approaches. Additionally, a specialized network architecture designed to capture traveling wave solutions is explored. The paper also assesses the ability of PINNs to approximate a family of solutions by generalizing across multiple reaction rate coefficients. The proposed method demonstrates high effectiveness in solving Fisher's equation with large reaction rate coefficients and shows promise for meshfree solutions of generalized reaction-diffusion systems.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"307 ","pages":"Article 109422"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001046552400345X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper employs physics-informed neural networks (PINNs) to solve Fisher's equation, a fundamental reaction-diffusion system with both simplicity and significance. The focus is on investigating Fisher's equation under conditions of large reaction rate coefficients, where solutions exhibit steep traveling waves that often present challenges for traditional numerical methods. To address these challenges, a residual weighting scheme is introduced in the network training to mitigate the difficulties associated with standard PINN approaches. Additionally, a specialized network architecture designed to capture traveling wave solutions is explored. The paper also assesses the ability of PINNs to approximate a family of solutions by generalizing across multiple reaction rate coefficients. The proposed method demonstrates high effectiveness in solving Fisher's equation with large reaction rate coefficients and shows promise for meshfree solutions of generalized reaction-diffusion systems.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.