Global stability of a system of viscous balance laws arising from chemotaxis with dynamic boundary flux

IF 2.4 2区 数学 Q1 MATHEMATICS
Yanni Zeng , Kun Zhao
{"title":"Global stability of a system of viscous balance laws arising from chemotaxis with dynamic boundary flux","authors":"Yanni Zeng ,&nbsp;Kun Zhao","doi":"10.1016/j.jde.2024.10.037","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers the global dynamics of classical solutions to an initial-boundary value problem of the system of viscous balance laws arising from chemotaxis in one space dimension:<span><span><span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><msub><mrow><mo>(</mo><mi>u</mi><mi>v</mi><mo>)</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>(</mo><mn>1</mn><mo>−</mo><mi>u</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><msub><mrow><mo>(</mo><mi>u</mi><mo>+</mo><msup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>.</mo></math></span></span></span> The system of equations is supplemented with <em>time-dependent influx</em> boundary condition for <em>u</em> and homogeneous Dirichlet boundary condition for <em>v</em>. Under suitable assumptions on the dynamic boundary data, it is shown that classical solutions with generic initial data exist globally in time. Moreover, the solutions are shown to converge to the constant equilibrium <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span>, as <span><math><mi>t</mi><mo>→</mo><mo>∞</mo></math></span>. There is no smallness assumption on the initial data. This is the first rigorous mathematical study of the model subject to dynamic Neumann boundary condition, and generalizes previous works in content and technicality.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 2221-2254"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624007022","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the global dynamics of classical solutions to an initial-boundary value problem of the system of viscous balance laws arising from chemotaxis in one space dimension:ut(uv)x=uxx+u(1u),x(a,b),t>0,vt(u+v2)x=vxx,x(a,b),t>0. The system of equations is supplemented with time-dependent influx boundary condition for u and homogeneous Dirichlet boundary condition for v. Under suitable assumptions on the dynamic boundary data, it is shown that classical solutions with generic initial data exist globally in time. Moreover, the solutions are shown to converge to the constant equilibrium (1,0), as t. There is no smallness assumption on the initial data. This is the first rigorous mathematical study of the model subject to dynamic Neumann boundary condition, and generalizes previous works in content and technicality.
具有动态边界通量的趋化作用所产生的粘性平衡定律系统的全局稳定性
本文研究了一个空间维度上由趋化引起的粘性平衡定律系统的初始边界值问题的经典解的全局动力学:ut-(uvv)x=ux+u(1-u),x∈(a,b),t>0,vt-(u+v2)x=vxx,x∈(a,b),t>0。在对动态边界数据作适当假设的情况下,可以证明具有一般初始数据的经典解在时间上是全局存在的。此外,随着 t→∞,这些解都会收敛到恒定平衡 (1,0)。初始数据不存在小性假设。这是对受动态诺依曼边界条件影响的模型进行的首次严格数学研究,在内容和技术上都对之前的研究成果进行了概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信