Jingwen Ren , Hanxiang Wang , Yanxin Liu , Jiaqi Che , Yanwen Zhang
{"title":"Failure mechanisms of fusion-bonded reinforcement joints in reinforced thermoplastic pipes under uniaxial tensile conditions","authors":"Jingwen Ren , Hanxiang Wang , Yanxin Liu , Jiaqi Che , Yanwen Zhang","doi":"10.1016/j.ijpvp.2024.105359","DOIUrl":null,"url":null,"abstract":"<div><div>As deep-sea oil and gas extraction technologies advance, the demand for high-performance joints in reinforced thermoplastic pipes (RTPs) has increased. This study introduces a novel fusion-reinforced joint for RTPs and analyzes its tensile failure mechanism. Two user-defined material (VUMAT) subroutines were developed for unidirectional fiber composites and plain fabric composites to analyze the damage of RTPs and joints. The tensile damage mechanisms were evaluated using the 3D Hashin failure criterion, the maximum strain failure criterion, the residual stiffness model, and the cohesive zone model (CZM). To validate the numerical model, fusion-reinforced joints were designed, machined, and subjected to uniaxial tensile tests. Findings suggest that matrix damage in RTPs is the primary factor contributing to stiffness degradation. The shear stress in the adhesive layer at both ends of the joint reaches the shear strength, resulting in the failure of the adhesive. The tensile process can be divided into four distinct stages: the no-damage stage, the bonding damage stage, the matrix damage stage, and the failure stage. Initially, damage in the adhesive layer leads to a minor decrease in tensile stiffness, followed by significant matrix damage in the RTPs. Failure of the adhesive layer at both ends of the joint gradually propagates to the middle, culminating in the failure of the fusion zone. The time required to reach maximum strain in the central joint region is longer than at the ends.</div></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"212 ","pages":"Article 105359"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308016124002370","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As deep-sea oil and gas extraction technologies advance, the demand for high-performance joints in reinforced thermoplastic pipes (RTPs) has increased. This study introduces a novel fusion-reinforced joint for RTPs and analyzes its tensile failure mechanism. Two user-defined material (VUMAT) subroutines were developed for unidirectional fiber composites and plain fabric composites to analyze the damage of RTPs and joints. The tensile damage mechanisms were evaluated using the 3D Hashin failure criterion, the maximum strain failure criterion, the residual stiffness model, and the cohesive zone model (CZM). To validate the numerical model, fusion-reinforced joints were designed, machined, and subjected to uniaxial tensile tests. Findings suggest that matrix damage in RTPs is the primary factor contributing to stiffness degradation. The shear stress in the adhesive layer at both ends of the joint reaches the shear strength, resulting in the failure of the adhesive. The tensile process can be divided into four distinct stages: the no-damage stage, the bonding damage stage, the matrix damage stage, and the failure stage. Initially, damage in the adhesive layer leads to a minor decrease in tensile stiffness, followed by significant matrix damage in the RTPs. Failure of the adhesive layer at both ends of the joint gradually propagates to the middle, culminating in the failure of the fusion zone. The time required to reach maximum strain in the central joint region is longer than at the ends.
期刊介绍:
Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants.
The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome:
• Pressure vessel engineering
• Structural integrity assessment
• Design methods
• Codes and standards
• Fabrication and welding
• Materials properties requirements
• Inspection and quality management
• Maintenance and life extension
• Ageing and environmental effects
• Life management
Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time.
International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.