Invariant measures of stochastic Maxwell equations and ergodic numerical approximations

IF 2.4 2区 数学 Q1 MATHEMATICS
Chuchu Chen , Jialin Hong , Lihai Ji , Ge Liang
{"title":"Invariant measures of stochastic Maxwell equations and ergodic numerical approximations","authors":"Chuchu Chen ,&nbsp;Jialin Hong ,&nbsp;Lihai Ji ,&nbsp;Ge Liang","doi":"10.1016/j.jde.2024.10.039","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the existence and uniqueness of the invariant measure for a class of stochastic Maxwell equations and proposes a novel kind of ergodic numerical approximations to inherit the intrinsic properties. The key to proving the ergodicity lies in the uniform regularity estimates of the exact and numerical solutions with respect to time, which are established by analyzing some important physical quantities. By introducing an auxiliary process, we show that the mean-square convergence order of the discontinuous Galerkin full discretization is <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> in the temporal direction and <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> in the spatial direction, which provides the convergence order of the numerical invariant measure to the exact one in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-Wasserstein distance.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1899-1959"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624007046","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the existence and uniqueness of the invariant measure for a class of stochastic Maxwell equations and proposes a novel kind of ergodic numerical approximations to inherit the intrinsic properties. The key to proving the ergodicity lies in the uniform regularity estimates of the exact and numerical solutions with respect to time, which are established by analyzing some important physical quantities. By introducing an auxiliary process, we show that the mean-square convergence order of the discontinuous Galerkin full discretization is 12 in the temporal direction and 12 in the spatial direction, which provides the convergence order of the numerical invariant measure to the exact one in L2-Wasserstein distance.
随机麦克斯韦方程的不变量和遍历数值近似值
本文研究了一类随机麦克斯韦方程不变量的存在性和唯一性,并提出了一种新的遍历数值近似来继承其固有特性。证明遍历性的关键在于精确解和数值解相对于时间的均匀正则性估计,这些估计是通过分析一些重要的物理量建立起来的。通过引入辅助过程,我们证明了非连续 Galerkin 全离散化的均方收敛阶数在时间方向上为 12,在空间方向上为 12,这就提供了数值不变度量在 L2-Wasserstein 距离上对精确不变度量的收敛阶数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信