M. Benyettou , K. Madani , S.C. Djebbar , H. Amin , M. Belhouari , M. Elajrami , X. Feaugas , R.D.S.G. Campilho
{"title":"Analysis of load-displacement curves of an adhesive-reinforced composite patch repaired plate using the combination of XFEM and CZM techniques","authors":"M. Benyettou , K. Madani , S.C. Djebbar , H. Amin , M. Belhouari , M. Elajrami , X. Feaugas , R.D.S.G. Campilho","doi":"10.1016/j.ijadhadh.2024.103885","DOIUrl":null,"url":null,"abstract":"<div><div>Since the development of the eXtended Finite Element Method (XFEM), Cohesive Zone Modelling (CZM), and the Virtual Crack Closure Technique (VCCT) for damage analysis in repaired structures, it has now become easy to validate experimental tensile tests carried out on damaged and repaired plates with a composite patch. In most cases, these tensile tests can be expensive and time-consuming due to surface preparation, cleaning, polishing, adhesive application, and the crosslinking time of the adhesive, which must be carefully considered. The analysis of damage in structures assembled by adhesive bonding is crucial to predicting their behavior under various loading conditions. Moreover, the analysis of experimental curves is in most cases translated a global behavior without taking into account the details that can influence the results. With the introduction of techniques (XFEM, CZM and VCCT), it is now possible to model different forms of damage, accounting for several mechanical and geometric parameters of the plate, patch, and adhesive. This work aims to analyze the behavior under tensile loading of a 2024-T3 aluminum plate presenting an initial crack of different lengths emanating from a central circular notch. This plate is repaired by a carbon/epoxy type patch through an adekit A140 adhesive. The combined use of XFEM to track damage in the plate and CZM for adhesive debonding allowed the acquisition of tensile load-elongation curves and the assessment of damage inflicted by loading on the plate. The results demonstrate that the combined use of XFEM and CZM techniques enables the identification of the adhesive debonding impact on the load transfer to the patch and consequently on the strength of the repaired structure. Furthermore, these highlight that the decrease in the effectiveness of the composite patch with increasing crack size is directly linked to the progressive deterioration of both the plate and the adhesive strength.</div></div>","PeriodicalId":13732,"journal":{"name":"International Journal of Adhesion and Adhesives","volume":"136 ","pages":"Article 103885"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adhesion and Adhesives","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143749624002677","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Since the development of the eXtended Finite Element Method (XFEM), Cohesive Zone Modelling (CZM), and the Virtual Crack Closure Technique (VCCT) for damage analysis in repaired structures, it has now become easy to validate experimental tensile tests carried out on damaged and repaired plates with a composite patch. In most cases, these tensile tests can be expensive and time-consuming due to surface preparation, cleaning, polishing, adhesive application, and the crosslinking time of the adhesive, which must be carefully considered. The analysis of damage in structures assembled by adhesive bonding is crucial to predicting their behavior under various loading conditions. Moreover, the analysis of experimental curves is in most cases translated a global behavior without taking into account the details that can influence the results. With the introduction of techniques (XFEM, CZM and VCCT), it is now possible to model different forms of damage, accounting for several mechanical and geometric parameters of the plate, patch, and adhesive. This work aims to analyze the behavior under tensile loading of a 2024-T3 aluminum plate presenting an initial crack of different lengths emanating from a central circular notch. This plate is repaired by a carbon/epoxy type patch through an adekit A140 adhesive. The combined use of XFEM to track damage in the plate and CZM for adhesive debonding allowed the acquisition of tensile load-elongation curves and the assessment of damage inflicted by loading on the plate. The results demonstrate that the combined use of XFEM and CZM techniques enables the identification of the adhesive debonding impact on the load transfer to the patch and consequently on the strength of the repaired structure. Furthermore, these highlight that the decrease in the effectiveness of the composite patch with increasing crack size is directly linked to the progressive deterioration of both the plate and the adhesive strength.
期刊介绍:
The International Journal of Adhesion and Adhesives draws together the many aspects of the science and technology of adhesive materials, from fundamental research and development work to industrial applications. Subject areas covered include: interfacial interactions, surface chemistry, methods of testing, accumulation of test data on physical and mechanical properties, environmental effects, new adhesive materials, sealants, design of bonded joints, and manufacturing technology.