Evaluating the moisture absorption percentage in the adhesive layers of carbon fiber reinforced plastic joints via electromagnetic induction testing and diffusion analysis
{"title":"Evaluating the moisture absorption percentage in the adhesive layers of carbon fiber reinforced plastic joints via electromagnetic induction testing and diffusion analysis","authors":"Wataru Matsunaga , Satoshi Imai , Yoshihiro Mizutani , Tetsuo Yasuoka , Akira Todoroki","doi":"10.1016/j.ijadhadh.2024.103883","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we propose a method that combines moisture absorption analysis and electromagnetic induction testing (EIT) to detect weak bonds formed in the adhesive layers of carbon fiber reinforced plastic (CFRP) joints due to moisture absorption. Although EIT is effective for assessing CFRP joint adhesive moisture absorption, early-stage detection of weak bonds is challenging. Our method addresses this by combining calculations of moisture absorption percentage via the diffusion equation and EIT-based measurements. First, we conducted diffusion analysis using the finite difference method (FDM). The moisture absorption percentage calculated via the FDM was validated by comparing it with the results of the moisture absorption tests of the CFRP adhesive joints, and good agreement was observed. Second, EIT was applied to the CFRP adhesive joints, and the experimental results indicated that the moisture absorption percentage of the CFRP joint can be qualitatively evaluated using EIT. Finally, the moisture absorption of the CFRP joint adhesive layer was quantitatively evaluated by combining the results of EIT on the CFRP joints with those of the numerical analysis. Therefore, the proposed method enables the previously difficult quantitative evaluation of the early-stage moisture absorption percentage of CFRP joint adhesive layers and is effective for the detection of weak bonds created by moisture absorption in CFRP joints.</div></div>","PeriodicalId":13732,"journal":{"name":"International Journal of Adhesion and Adhesives","volume":"136 ","pages":"Article 103883"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adhesion and Adhesives","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143749624002653","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we propose a method that combines moisture absorption analysis and electromagnetic induction testing (EIT) to detect weak bonds formed in the adhesive layers of carbon fiber reinforced plastic (CFRP) joints due to moisture absorption. Although EIT is effective for assessing CFRP joint adhesive moisture absorption, early-stage detection of weak bonds is challenging. Our method addresses this by combining calculations of moisture absorption percentage via the diffusion equation and EIT-based measurements. First, we conducted diffusion analysis using the finite difference method (FDM). The moisture absorption percentage calculated via the FDM was validated by comparing it with the results of the moisture absorption tests of the CFRP adhesive joints, and good agreement was observed. Second, EIT was applied to the CFRP adhesive joints, and the experimental results indicated that the moisture absorption percentage of the CFRP joint can be qualitatively evaluated using EIT. Finally, the moisture absorption of the CFRP joint adhesive layer was quantitatively evaluated by combining the results of EIT on the CFRP joints with those of the numerical analysis. Therefore, the proposed method enables the previously difficult quantitative evaluation of the early-stage moisture absorption percentage of CFRP joint adhesive layers and is effective for the detection of weak bonds created by moisture absorption in CFRP joints.
期刊介绍:
The International Journal of Adhesion and Adhesives draws together the many aspects of the science and technology of adhesive materials, from fundamental research and development work to industrial applications. Subject areas covered include: interfacial interactions, surface chemistry, methods of testing, accumulation of test data on physical and mechanical properties, environmental effects, new adhesive materials, sealants, design of bonded joints, and manufacturing technology.