Guadalupe Alvarez Gonzalez, Micaela Chacón, Thomas Butterfield, Neil Dixon
{"title":"Tuning the performance of a TphR-based terephthalate biosensor with a design of experiments approach","authors":"Guadalupe Alvarez Gonzalez, Micaela Chacón, Thomas Butterfield, Neil Dixon","doi":"10.1016/j.mec.2024.e00250","DOIUrl":null,"url":null,"abstract":"<div><div>Transcription factor-based biosensors are genetic tools that aim to predictability link the presence of a specific input stimuli to a tailored gene expression output. The performance characteristics of a biosensor fundamentally determines its potential applications. However, current methods to engineer and optimise tailored biosensor responses are highly nonintuitive, and struggle to investigate multidimensional sequence/design space efficiently. In this study we employ a design of experiments (DoE) approach to build a framework for efficiently engineering activator-based biosensors with tailored performances, and we apply the framework for the development of biosensors for the polyethylene terephthalate (PET) plastic degradation monomer terephthalate (TPA). We simultaneously engineer the core promoter and operator regions of the responsive promoter, and by employing a dual refactoring approach, we were able to explore an enhanced biosensor design space and assign their causative performance effects. The approach employed here serves as a foundational framework for engineering transcriptional biosensors and enabled development of tailored biosensors with enhanced dynamic range and diverse signal output, sensitivity, and steepness. We further demonstrate its applicability on the development of tailored biosensors for primary screening of PET hydrolases and enzyme condition screening, demonstrating the potential of statistical modelling in optimising biosensors for tailored industrial and environmental applications.</div></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"19 ","pages":"Article e00250"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214030124000191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transcription factor-based biosensors are genetic tools that aim to predictability link the presence of a specific input stimuli to a tailored gene expression output. The performance characteristics of a biosensor fundamentally determines its potential applications. However, current methods to engineer and optimise tailored biosensor responses are highly nonintuitive, and struggle to investigate multidimensional sequence/design space efficiently. In this study we employ a design of experiments (DoE) approach to build a framework for efficiently engineering activator-based biosensors with tailored performances, and we apply the framework for the development of biosensors for the polyethylene terephthalate (PET) plastic degradation monomer terephthalate (TPA). We simultaneously engineer the core promoter and operator regions of the responsive promoter, and by employing a dual refactoring approach, we were able to explore an enhanced biosensor design space and assign their causative performance effects. The approach employed here serves as a foundational framework for engineering transcriptional biosensors and enabled development of tailored biosensors with enhanced dynamic range and diverse signal output, sensitivity, and steepness. We further demonstrate its applicability on the development of tailored biosensors for primary screening of PET hydrolases and enzyme condition screening, demonstrating the potential of statistical modelling in optimising biosensors for tailored industrial and environmental applications.
期刊介绍:
Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.