Up to the first two order Melnikov analysis for the exact cyclicity of planar piecewise linear vector fields with nonlinear switching curve

IF 2.4 2区 数学 Q1 MATHEMATICS
Liqin Zhao, Zheng Si, Ranran Jia
{"title":"Up to the first two order Melnikov analysis for the exact cyclicity of planar piecewise linear vector fields with nonlinear switching curve","authors":"Liqin Zhao,&nbsp;Zheng Si,&nbsp;Ranran Jia","doi":"10.1016/j.jde.2024.11.007","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we focus on providing the exact bounds for the maximum number of limit cycles <span><math><mi>Z</mi><mo>(</mo><mn>3</mn><mo>,</mo><mi>n</mi><mo>)</mo></math></span> that planar piecewise linear differential systems with two zones separated by the curve <span><math><mi>y</mi><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> under perturbation of arbitrary polynomials of <span><math><mi>x</mi><mo>,</mo><mi>y</mi></math></span> with degree <em>n</em> can have, where <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span>. By the first two order Melnikov functions, we achieve that <span><math><mi>Z</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>=</mo><mn>12</mn></math></span>, <span><math><mi>Z</mi><mo>(</mo><mn>3</mn><mo>,</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></math></span> for <span><math><mn>3</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>88</mn></math></span> and <span><math><mi>Z</mi><mo>(</mo><mn>3</mn><mo>,</mo><mi>n</mi><mo>)</mo><mo>≥</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></math></span> for any <em>n</em>. The results are novel and improve the previous results in the literature.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 2255-2292"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624007228","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we focus on providing the exact bounds for the maximum number of limit cycles Z(3,n) that planar piecewise linear differential systems with two zones separated by the curve y=x3 under perturbation of arbitrary polynomials of x,y with degree n can have, where nN. By the first two order Melnikov functions, we achieve that Z(3,2)=12, Z(3,n)=2n+1 for 3n88 and Z(3,n)2n+1 for any n. The results are novel and improve the previous results in the literature.
具有非线性切换曲线的平面片断线性矢量场精确周期性的梅利尼科夫分析(最高一阶二阶
在本文中,我们重点给出了平面片断线性微分系统的最大极限循环数 Z(3,n)的精确边界,在 n∈N 时,该系统在 x,y 的度数为 n 的任意多项式的扰动下,有两个区域被曲线 y=x3 分隔。通过一阶二阶梅利尼科夫函数,我们得到了 3≤n≤88 时 Z(3,2)=12, Z(3,n)=2n+1 和任意 n 时 Z(3,n)≥2n+1 的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信