Solving Riemann problems with a topological tool

IF 2.4 2区 数学 Q1 MATHEMATICS
Cesar S. Eschenazi , Wanderson J. Lambert , Marlon M. López-Flores , Dan Marchesin , Carlos F.B. Palmeira , Bradley J. Plohr
{"title":"Solving Riemann problems with a topological tool","authors":"Cesar S. Eschenazi ,&nbsp;Wanderson J. Lambert ,&nbsp;Marlon M. López-Flores ,&nbsp;Dan Marchesin ,&nbsp;Carlos F.B. Palmeira ,&nbsp;Bradley J. Plohr","doi":"10.1016/j.jde.2024.11.002","DOIUrl":null,"url":null,"abstract":"<div><div>In previous work, we developed a topological framework for solving Riemann initial-value problems for a system of conservation laws. Its core is a differentiable manifold, called the wave manifold, with points representing shock and rarefaction waves. In the present paper, we construct, in detail, the three-dimensional wave manifold for a system of two conservation laws with quadratic flux functions. Using adapted coordinates, we derive explicit formulae for important surfaces and curves within the wave manifold and display them graphically. The surfaces subdivide the manifold into regions according to shock type, such as ones corresponding to the Lax admissibility criterion. The curves parametrize rarefaction, shock, and composite waves appearing in contiguous wave patterns. Whereas wave curves overlap in state space, they are disentangled within the wave manifold. We solve a Riemann problem by constructing a wave curve associated with the slow characteristic speed family, generating a surface from it using shock curves, and intersecting this surface with a fast family wave curve. This construction is applied to solve Riemann problems for several illustrative cases.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 2134-2174"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624007174","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In previous work, we developed a topological framework for solving Riemann initial-value problems for a system of conservation laws. Its core is a differentiable manifold, called the wave manifold, with points representing shock and rarefaction waves. In the present paper, we construct, in detail, the three-dimensional wave manifold for a system of two conservation laws with quadratic flux functions. Using adapted coordinates, we derive explicit formulae for important surfaces and curves within the wave manifold and display them graphically. The surfaces subdivide the manifold into regions according to shock type, such as ones corresponding to the Lax admissibility criterion. The curves parametrize rarefaction, shock, and composite waves appearing in contiguous wave patterns. Whereas wave curves overlap in state space, they are disentangled within the wave manifold. We solve a Riemann problem by constructing a wave curve associated with the slow characteristic speed family, generating a surface from it using shock curves, and intersecting this surface with a fast family wave curve. This construction is applied to solve Riemann problems for several illustrative cases.
用拓扑工具解决黎曼问题
在之前的工作中,我们开发了一个拓扑框架,用于求解守恒定律系统的黎曼初值问题。其核心是一个称为波流形的可变流形,其点代表冲击波和稀释波。在本文中,我们详细构建了具有二次通量函数的两个守恒定律系统的三维波流形。我们使用适应坐标,推导出波流形内重要曲面和曲线的明确公式,并以图形显示。曲面根据冲击类型将流形细分为多个区域,例如与拉克斯可接受性准则相对应的区域。曲线参数化稀释波、冲击波和复合波,以连续的波形出现。虽然波形曲线在状态空间中重叠,但它们在波形流形中是分离的。我们通过构建与慢特征速度族相关的波曲线,利用冲击曲线生成一个曲面,并将该曲面与快速族波曲线相交,从而求解黎曼问题。这种构造被应用于解决几个示例的黎曼问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信