Computational study of time-fractional non-linear Kawahara equations using Quintic B-spline and Galerkin’s method

Q1 Mathematics
Shams Ul Arifeen , Ihteram Ali , Imtiaz Ahmad , Sadaf Shaheen
{"title":"Computational study of time-fractional non-linear Kawahara equations using Quintic B-spline and Galerkin’s method","authors":"Shams Ul Arifeen ,&nbsp;Ihteram Ali ,&nbsp;Imtiaz Ahmad ,&nbsp;Sadaf Shaheen","doi":"10.1016/j.padiff.2024.100779","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents two numerical methods focused on Quintic B-spline (QBS) and Galerkin finite element method (GFEM) for solving time-fractional Kawahara equations. The QBS is utilized as both the basis and test function in the FEM approach. We apply Caputo formula with quadrature rule for evaluation of temporal fractional part. The QBS and GFEM formulation are used to approximate the space functions and their derivatives. Furthermore, a four-point Gauss Legendre quadrature is employed to evaluate the source term in the GFEM. The efficiency and accuracy of the proposed scheme are evaluated using the <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> norms. Additionally, Fourier stability analysis is conducted, and it is revealed that the method exhibits unconditional stability. The results, presented in the form of tables and graphs to demonstrate the effectiveness of the scheme.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100779"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124001657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents two numerical methods focused on Quintic B-spline (QBS) and Galerkin finite element method (GFEM) for solving time-fractional Kawahara equations. The QBS is utilized as both the basis and test function in the FEM approach. We apply Caputo formula with quadrature rule for evaluation of temporal fractional part. The QBS and GFEM formulation are used to approximate the space functions and their derivatives. Furthermore, a four-point Gauss Legendre quadrature is employed to evaluate the source term in the GFEM. The efficiency and accuracy of the proposed scheme are evaluated using the E2 and E norms. Additionally, Fourier stability analysis is conducted, and it is revealed that the method exhibits unconditional stability. The results, presented in the form of tables and graphs to demonstrate the effectiveness of the scheme.
使用 Quintic B-样条和 Galerkin 方法对时间分数非线性川原方程的计算研究
本研究介绍了以 Quintic B-spline (QBS) 和 Galerkin 有限元法 (GFEM) 为重点的两种数值方法,用于求解时间分数川原方程。在有限元方法中,QBS 既是基础函数,也是检验函数。我们采用带有正交规则的 Caputo 公式来评估时间分数部分。QBS 和 GFEM 公式用于逼近空间函数及其导数。此外,我们还采用了四点高斯 Legendre 正交来评估 GFEM 中的源项。利用 E2 和 E∞ 准则对所提方案的效率和精度进行了评估。此外,还进行了傅立叶稳定性分析,结果表明该方法具有无条件稳定性。结果以表格和图表的形式展示,以证明该方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信