{"title":"Flux jumps and mechanical effects in high-temperature superconductors with multi-field coupling model","authors":"Lan Wang , Haowei Wu , Huadong Yong","doi":"10.1016/j.ijthermalsci.2024.109524","DOIUrl":null,"url":null,"abstract":"<div><div>Mechanical deformation during the magnetization process of high-temperature superconductors can lead to the deterioration in their critical current. A multi-field coupling model involving four physical fields is established to investigate the role of mechanical strain in the flux jump of the superconducting bulk. The electrical, magnetic, thermal, and mechanical coupling behavior is presented and analyzed under different applied fields. The simulation results of the coupled model are compared with experimental data, which showing an agreement. The numerical results indicate that in the superconductors, mechanical deformation significantly affects the electrical, magnetic, and thermal properties owing to a reduction in the critical current density under mechanical strain. The moment and location of magnetic flux jump will change as the mechanical strain is considered. Interestingly, the occurrence of magnetic flux jumps during field-cooling magnetization leads to a decrease in stress in bulk superconductor, suggesting that the fracture may not be caused by flux jumps, which is contrary to common understanding. Moreover, the temperature changes uniformly at different locations within the superconducting bulk. In the extended study, the thermo-magnetic and mechanical properties of the bulk material under ZFCM are presented using the coupled model. The effect of mechanics on the flux jump differs between FCM and ZFCM, which is attributed to the nonlinear changes in the electric field.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"209 ","pages":"Article 109524"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S129007292400646X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mechanical deformation during the magnetization process of high-temperature superconductors can lead to the deterioration in their critical current. A multi-field coupling model involving four physical fields is established to investigate the role of mechanical strain in the flux jump of the superconducting bulk. The electrical, magnetic, thermal, and mechanical coupling behavior is presented and analyzed under different applied fields. The simulation results of the coupled model are compared with experimental data, which showing an agreement. The numerical results indicate that in the superconductors, mechanical deformation significantly affects the electrical, magnetic, and thermal properties owing to a reduction in the critical current density under mechanical strain. The moment and location of magnetic flux jump will change as the mechanical strain is considered. Interestingly, the occurrence of magnetic flux jumps during field-cooling magnetization leads to a decrease in stress in bulk superconductor, suggesting that the fracture may not be caused by flux jumps, which is contrary to common understanding. Moreover, the temperature changes uniformly at different locations within the superconducting bulk. In the extended study, the thermo-magnetic and mechanical properties of the bulk material under ZFCM are presented using the coupled model. The effect of mechanics on the flux jump differs between FCM and ZFCM, which is attributed to the nonlinear changes in the electric field.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.