Kaiyue Tian , Xinxin Xu , Junfeng Zhu , Sitong Cao , Zhonglong Yin , Feilong Li , Weiben Yang
{"title":"A critical review of oxidation for membrane fouling control in water treatment: Applications, mechanisms and challenges","authors":"Kaiyue Tian , Xinxin Xu , Junfeng Zhu , Sitong Cao , Zhonglong Yin , Feilong Li , Weiben Yang","doi":"10.1016/j.jece.2024.114718","DOIUrl":null,"url":null,"abstract":"<div><div>Membrane fouling seriously impedes the application of membrane technology in water treatment. Although oxidation achieved intensive attention in membrane fouling control, controversy results were observed in many works since oxidation may accelerate fouling and damage membrane under some circumstances and the underlying mechanism still remained unclear in complex water matrices. This study provides a comprehensive review on the recent progress of pre-oxidation and oxidation cleaning in fouling control for membrane (e.g., microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), membrane distillation (MD)). Common oxidation approaches (e.g., chlorine, ozonation, H<sub>2</sub>O<sub>2</sub>, sulfate radical (SO<sub>4</sub><sup>●–</sup>), potassium permanganate (KMnO<sub>4</sub>) and Fe(VI) based oxidation) were systematically summarized and compared, along with their positive and negative impact on fouling mitigation. Furthermore, the fouling control performance and underlying mechanism were reviewed according to the recent published literatures. Ultimately, the challenges and future prospects of oxidation technology in membrane fouling control application were also proposed based on the current review. Overall, this review may provide the guidance for developing advanced oxidation strategy in controlling membrane fouling in water treatment and minimizing the potential drawbacks and risks of oxidation as a membrane fouling control strategy.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114718"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343724028501","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Membrane fouling seriously impedes the application of membrane technology in water treatment. Although oxidation achieved intensive attention in membrane fouling control, controversy results were observed in many works since oxidation may accelerate fouling and damage membrane under some circumstances and the underlying mechanism still remained unclear in complex water matrices. This study provides a comprehensive review on the recent progress of pre-oxidation and oxidation cleaning in fouling control for membrane (e.g., microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), membrane distillation (MD)). Common oxidation approaches (e.g., chlorine, ozonation, H2O2, sulfate radical (SO4●–), potassium permanganate (KMnO4) and Fe(VI) based oxidation) were systematically summarized and compared, along with their positive and negative impact on fouling mitigation. Furthermore, the fouling control performance and underlying mechanism were reviewed according to the recent published literatures. Ultimately, the challenges and future prospects of oxidation technology in membrane fouling control application were also proposed based on the current review. Overall, this review may provide the guidance for developing advanced oxidation strategy in controlling membrane fouling in water treatment and minimizing the potential drawbacks and risks of oxidation as a membrane fouling control strategy.
期刊介绍:
The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.