In-depth insights into carbohydrate-active enzyme genes regarding the disparities in soil organic carbon after 12-year rotational cropping system field study
Hao Wang , JinPing Chen , Mingxue Du , Yihao Ruan , Jiameng Guo , Ruixin Shao , Yongchao Wang , Qinghua Yang
{"title":"In-depth insights into carbohydrate-active enzyme genes regarding the disparities in soil organic carbon after 12-year rotational cropping system field study","authors":"Hao Wang , JinPing Chen , Mingxue Du , Yihao Ruan , Jiameng Guo , Ruixin Shao , Yongchao Wang , Qinghua Yang","doi":"10.1016/j.ejsobi.2024.103694","DOIUrl":null,"url":null,"abstract":"<div><div>Carbohydrate-active enzymes (CAZymes) play a crucial role in plant-derived carbon utilization and decomposition and are influenced by the crop rotation system; however, our knowledge of how different agricultural systems impact CAZyme functionality is still limited. We conducted a metagenomic analysis to evaluate the functional genes of CAZymes in a 12-year in situ farmland with three commonly used crop rotation systems: wheat-maize rotation (WM), wheat-cotton rotation (WC), and wheat-soybean rotation (WS). We aimed to study the impact of long-term use of crop rotation, especially crop rotation involving soybean, on soil organic carbon (SOC) content and to gain an in-depth understanding of the CAZyme genes in context of the disparities in SOC. After 12 years, the SOC content was significantly higher in WS than in WC (5.44 %) and WM (17.6 %). Furthermore, the crop rotation system had a significant effect on the soil microbial communities and CAZyme function genes. Detailly, WS increased the phyla abundance of <em>Proteobacteria</em>, <em>Actinobacteria</em>, and <em>Firmicutes</em> and enriched the glycoside hydrolase (GH) and carbohydrate-binding modules (CBM) genes; WC increased the abundance of <em>Acidobacteria</em> and <em>Bacteroidota</em> and enriched the polysaccharide lyase gene; WM increased the abundance of <em>Nitrospirae</em>, <em>Candidatus_Rokubacteria</em>, <em>Chloroflexi</em> and <em>Gemmatimonadetes</em> and enriched the gene abundance of glycosyltransferases and auxiliary activity genes. Additionally, <em>Acidobacteria</em>, <em>Proteobacteria</em>, and <em>Actinobacteria</em> are key phyla involved in soil carbon cycling and collectively contribute >70 % of the total CAZyme functional genes, which highlights their importance. In addition, our results indicated that total nitrogen content played a major role in influencing genes related to CAZymes, especially those belonging to the GH family. Our study demonstrates that WS conferred the advantage of increasing SOC across the three crop rotation systems. CAZyme analysis revealed that WS's could potentially support the increased abundance of <em>Proteobacteria</em>, <em>Actinobacteria</em> and <em>Firmicutes</em> in the soil community, at the same time potentially leading to increased number of GH and CBM genes in the soil, which may bolster the decomposition and transformation of plant-derived carbon, thus promoting an increase in SOC content. The findings of this study offer new insights into the microbial factors contributing to SOC enhancement in rotation systems.</div></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"123 ","pages":"Article 103694"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1164556324001006","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbohydrate-active enzymes (CAZymes) play a crucial role in plant-derived carbon utilization and decomposition and are influenced by the crop rotation system; however, our knowledge of how different agricultural systems impact CAZyme functionality is still limited. We conducted a metagenomic analysis to evaluate the functional genes of CAZymes in a 12-year in situ farmland with three commonly used crop rotation systems: wheat-maize rotation (WM), wheat-cotton rotation (WC), and wheat-soybean rotation (WS). We aimed to study the impact of long-term use of crop rotation, especially crop rotation involving soybean, on soil organic carbon (SOC) content and to gain an in-depth understanding of the CAZyme genes in context of the disparities in SOC. After 12 years, the SOC content was significantly higher in WS than in WC (5.44 %) and WM (17.6 %). Furthermore, the crop rotation system had a significant effect on the soil microbial communities and CAZyme function genes. Detailly, WS increased the phyla abundance of Proteobacteria, Actinobacteria, and Firmicutes and enriched the glycoside hydrolase (GH) and carbohydrate-binding modules (CBM) genes; WC increased the abundance of Acidobacteria and Bacteroidota and enriched the polysaccharide lyase gene; WM increased the abundance of Nitrospirae, Candidatus_Rokubacteria, Chloroflexi and Gemmatimonadetes and enriched the gene abundance of glycosyltransferases and auxiliary activity genes. Additionally, Acidobacteria, Proteobacteria, and Actinobacteria are key phyla involved in soil carbon cycling and collectively contribute >70 % of the total CAZyme functional genes, which highlights their importance. In addition, our results indicated that total nitrogen content played a major role in influencing genes related to CAZymes, especially those belonging to the GH family. Our study demonstrates that WS conferred the advantage of increasing SOC across the three crop rotation systems. CAZyme analysis revealed that WS's could potentially support the increased abundance of Proteobacteria, Actinobacteria and Firmicutes in the soil community, at the same time potentially leading to increased number of GH and CBM genes in the soil, which may bolster the decomposition and transformation of plant-derived carbon, thus promoting an increase in SOC content. The findings of this study offer new insights into the microbial factors contributing to SOC enhancement in rotation systems.
期刊介绍:
The European Journal of Soil Biology covers all aspects of soil biology which deal with microbial and faunal ecology and activity in soils, as well as natural ecosystems or biomes connected to ecological interests: biodiversity, biological conservation, adaptation, impact of global changes on soil biodiversity and ecosystem functioning and effects and fate of pollutants as influenced by soil organisms. Different levels in ecosystem structure are taken into account: individuals, populations, communities and ecosystems themselves. At each level, different disciplinary approaches are welcomed: molecular biology, genetics, ecophysiology, ecology, biogeography and landscape ecology.