Fanfan Ju , Liuzhu Chen , Yaoyao Kong , Teng Ma , Chi Zhang , Zhanqiang Chen
{"title":"Abiotic chlorination of organic matter in the soil environment: A simulation study","authors":"Fanfan Ju , Liuzhu Chen , Yaoyao Kong , Teng Ma , Chi Zhang , Zhanqiang Chen","doi":"10.1016/j.orggeochem.2024.104877","DOIUrl":null,"url":null,"abstract":"<div><div>Chlorination of organic matter occurs naturally and is an important part of the chlorine cycle. To investigate the likelihood that inorganic oxidants, (Fe(NO<sub>3</sub>)<sub>3</sub>, H<sub>2</sub>O<sub>2</sub>, and hydroxyl radicals (·OH), frequently present in soil environments, could promote the synthesis of chlorinated organic matter in the soil environment, litterfall, humus, and soil (0–20 cm) were collected and used in laboratory based simulation experiments. Results indicate that these inorganic oxidants might promote the synthesis of chlorinated organic matter, but their impact varied due to varying suitable reaction circumstances. Litterfall was the most sensitive to chlorination, likely caused by the presence of abundant amounts of labile organic matter, and the chlorination process was limited by its Cl<sup>−</sup> level. Hydroxyl radicals showed a dual effect (producing or degrading chlorinated organic matter) on the three materials assessed, which was controlled by both ·OH concentration and the stability of organic matter, and the dual effect was evident in order of litterfall > humus > soil. The Fe(NO<sub>3</sub>)<sub>3</sub>-mediated chlorination of organic matter was only significant in litterfall due to its labile organic matter composition, while the peroxidative reaction caused by H<sub>2</sub>O<sub>2</sub> in the producing chlorinated organic matter was only obvious in soil, most likely due to the presence of metals, facilitating the process. Combined this study sheds light on the chlorine cycle by verifying that inorganic oxidants might mediate abiotic chlorination of organic matter in a natural soil environment.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"198 ","pages":"Article 104877"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146638024001426","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Chlorination of organic matter occurs naturally and is an important part of the chlorine cycle. To investigate the likelihood that inorganic oxidants, (Fe(NO3)3, H2O2, and hydroxyl radicals (·OH), frequently present in soil environments, could promote the synthesis of chlorinated organic matter in the soil environment, litterfall, humus, and soil (0–20 cm) were collected and used in laboratory based simulation experiments. Results indicate that these inorganic oxidants might promote the synthesis of chlorinated organic matter, but their impact varied due to varying suitable reaction circumstances. Litterfall was the most sensitive to chlorination, likely caused by the presence of abundant amounts of labile organic matter, and the chlorination process was limited by its Cl− level. Hydroxyl radicals showed a dual effect (producing or degrading chlorinated organic matter) on the three materials assessed, which was controlled by both ·OH concentration and the stability of organic matter, and the dual effect was evident in order of litterfall > humus > soil. The Fe(NO3)3-mediated chlorination of organic matter was only significant in litterfall due to its labile organic matter composition, while the peroxidative reaction caused by H2O2 in the producing chlorinated organic matter was only obvious in soil, most likely due to the presence of metals, facilitating the process. Combined this study sheds light on the chlorine cycle by verifying that inorganic oxidants might mediate abiotic chlorination of organic matter in a natural soil environment.
期刊介绍:
Organic Geochemistry serves as the only dedicated medium for the publication of peer-reviewed research on all phases of geochemistry in which organic compounds play a major role. The Editors welcome contributions covering a wide spectrum of subjects in the geosciences broadly based on organic chemistry (including molecular and isotopic geochemistry), and involving geology, biogeochemistry, environmental geochemistry, chemical oceanography and hydrology.
The scope of the journal includes research involving petroleum (including natural gas), coal, organic matter in the aqueous environment and recent sediments, organic-rich rocks and soils and the role of organics in the geochemical cycling of the elements.
Sedimentological, paleontological and organic petrographic studies will also be considered for publication, provided that they are geochemically oriented. Papers cover the full range of research activities in organic geochemistry, and include comprehensive review articles, technical communications, discussion/reply correspondence and short technical notes. Peer-reviews organised through three Chief Editors and a staff of Associate Editors, are conducted by well known, respected scientists from academia, government and industry. The journal also publishes reviews of books, announcements of important conferences and meetings and other matters of direct interest to the organic geochemical community.