Amin Hamed Mashhadzadeh , Maryam Zarghami Dehaghani , Haris Doumanidis , Boris Golman , Konstantinos V. Kostas , Christos Spitas
{"title":"Microstructural evolution and crystalline behavior in silicon carbide nano-powder during selective laser melting: A molecular dynamics simulation","authors":"Amin Hamed Mashhadzadeh , Maryam Zarghami Dehaghani , Haris Doumanidis , Boris Golman , Konstantinos V. Kostas , Christos Spitas","doi":"10.1016/j.jcrysgro.2024.127985","DOIUrl":null,"url":null,"abstract":"<div><div>Silicon carbide (SiC), with its isotropic three-dimensional diamond lattice structure, emerges as a promising candidate for SiC device production through selective laser melting (SLM). The appeal lies in its simplified fabrication process, coupled with outstanding thermal properties, high hardness, and remarkable wear resistance. This potential of SiC in SLM not only streamlines the fabrication process but also harnesses the exceptional properties inherent in SiC. In this study, we utilized molecular dynamics (MD) simulations to model the SLM process. A nanopowder bed made up of approximately half a million atoms of SiC was simulated as a two-layer quasi-2D system. Controlled heating of SiC meltpools, slightly surpassing the melting temperature, facilitated the monitored coalescence of nano-powders, resulting in successful melting and the formation of continuous domains within the meltpools. The observed reduction in crystalline structures is due to the elevated thermal energy imparted to the SiC atoms during the heating process, which disrupts the atomic arrangement and leads to a transition from crystalline to amorphous states. The subsequent solidification process, characterized by a high cooling rate, led to the establishment of final amorphous solidified domains. Looking ahead, our research aims to delve into exploring the structural and functional characteristics of the produced SiC devices, evaluating their potential applications across diverse technological domains.</div></div>","PeriodicalId":353,"journal":{"name":"Journal of Crystal Growth","volume":"650 ","pages":"Article 127985"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crystal Growth","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022024824004238","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon carbide (SiC), with its isotropic three-dimensional diamond lattice structure, emerges as a promising candidate for SiC device production through selective laser melting (SLM). The appeal lies in its simplified fabrication process, coupled with outstanding thermal properties, high hardness, and remarkable wear resistance. This potential of SiC in SLM not only streamlines the fabrication process but also harnesses the exceptional properties inherent in SiC. In this study, we utilized molecular dynamics (MD) simulations to model the SLM process. A nanopowder bed made up of approximately half a million atoms of SiC was simulated as a two-layer quasi-2D system. Controlled heating of SiC meltpools, slightly surpassing the melting temperature, facilitated the monitored coalescence of nano-powders, resulting in successful melting and the formation of continuous domains within the meltpools. The observed reduction in crystalline structures is due to the elevated thermal energy imparted to the SiC atoms during the heating process, which disrupts the atomic arrangement and leads to a transition from crystalline to amorphous states. The subsequent solidification process, characterized by a high cooling rate, led to the establishment of final amorphous solidified domains. Looking ahead, our research aims to delve into exploring the structural and functional characteristics of the produced SiC devices, evaluating their potential applications across diverse technological domains.
期刊介绍:
The journal offers a common reference and publication source for workers engaged in research on the experimental and theoretical aspects of crystal growth and its applications, e.g. in devices. Experimental and theoretical contributions are published in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallization in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapor deposition, growth of III-V and II-VI and other semiconductors; characterization of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multilayer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials. A special feature of the journal is the periodic inclusion of proceedings of symposia and conferences on relevant aspects of crystal growth.