Development of machine learning model for the prediction of selectivity to light olefins from catalytic cracking of hydrocarbons

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2024-11-15 DOI:10.1016/j.fuel.2024.133682
Iradat Hussain Mafat , Sumeet K. Sharma , Dadi Venkata Surya , Chinta Sankar Rao , Uttam Maity , Ashok Barupal , Rakshvir Jasra
{"title":"Development of machine learning model for the prediction of selectivity to light olefins from catalytic cracking of hydrocarbons","authors":"Iradat Hussain Mafat ,&nbsp;Sumeet K. Sharma ,&nbsp;Dadi Venkata Surya ,&nbsp;Chinta Sankar Rao ,&nbsp;Uttam Maity ,&nbsp;Ashok Barupal ,&nbsp;Rakshvir Jasra","doi":"10.1016/j.fuel.2024.133682","DOIUrl":null,"url":null,"abstract":"<div><div>Light olefins are the primary building block for the production of petrochemicals and polymers. Light olefins are largely produced from steam/catalytic cracking of naphtha or ethane/propane. Selectivity to light olefins is significantly dependent on the reaction conditions. In this article, several machine learning models are developed and tested to predict the selectivity of ethylene and propylene using seven input features. For this study, a<!--> <!-->total of eight ML models consisting of adaptive boost, extreme gradient boost, categorical boost, light gradient boost, decision tree with bagging, random forest, k-nearest neighbour, and artificial neural models are developed. The extreme gradient boost model gave the<!--> <!-->highest prediction accuracy for the ethylene selectivity, while the light gradient boost gave the<!--> <!-->highest R<sup>2</sup> for the propylene selectivity. The SHAP analysis showed the input parameter’s importance ranking for ethylene predictions as temperature &gt; number of carbon atoms &gt; Si/Al ratio &gt; acidity &gt; weight hourly space velocity &gt; effect of diluent &gt; number of hydrogen atoms. The importance ranking of input parameters for propylene selectivity was observed as weight hourly space velocity &gt; acidity &gt; temperature &gt; Si/Al ratio &gt; effect of diluent &gt; number of carbon atoms &gt; number of hydrogen atoms.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"381 ","pages":"Article 133682"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001623612402831X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Light olefins are the primary building block for the production of petrochemicals and polymers. Light olefins are largely produced from steam/catalytic cracking of naphtha or ethane/propane. Selectivity to light olefins is significantly dependent on the reaction conditions. In this article, several machine learning models are developed and tested to predict the selectivity of ethylene and propylene using seven input features. For this study, a total of eight ML models consisting of adaptive boost, extreme gradient boost, categorical boost, light gradient boost, decision tree with bagging, random forest, k-nearest neighbour, and artificial neural models are developed. The extreme gradient boost model gave the highest prediction accuracy for the ethylene selectivity, while the light gradient boost gave the highest R2 for the propylene selectivity. The SHAP analysis showed the input parameter’s importance ranking for ethylene predictions as temperature > number of carbon atoms > Si/Al ratio > acidity > weight hourly space velocity > effect of diluent > number of hydrogen atoms. The importance ranking of input parameters for propylene selectivity was observed as weight hourly space velocity > acidity > temperature > Si/Al ratio > effect of diluent > number of carbon atoms > number of hydrogen atoms.
开发用于预测碳氢化合物催化裂化轻烯烃选择性的机器学习模型
轻烯烃是生产石油化工产品和聚合物的主要原料。轻烯烃主要通过石脑油或乙烷/丙烷的蒸汽/催化裂化生产。轻烯烃的选择性在很大程度上取决于反应条件。本文开发并测试了多个机器学习模型,利用七个输入特征预测乙烯和丙烯的选择性。在这项研究中,共开发了 8 个机器学习模型,包括自适应提升模型、极梯度提升模型、分类提升模型、轻梯度提升模型、决策树与装袋模型、随机森林模型、k-最近邻模型和人工神经网络模型。极梯度提升模型对乙烯选择性的预测精度最高,而轻梯度提升模型对丙烯选择性的预测 R2 最高。SHAP 分析表明,乙烯预测的输入参数重要性排序为温度、碳原子数、硅/铝比、酸度、重量时空速度、稀释剂的影响、氢原子数。丙烯选择性输入参数的重要性排序为:重量小时空间速度;酸度;温度;硅/铝比率;稀释剂的影响;碳原子数;氢原子数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信