Joubine Aghili , Emmanuel Franck , Romain Hild , Victor Michel-Dansac , Vincent Vigon
{"title":"Accelerating the convergence of Newton’s method for nonlinear elliptic PDEs using Fourier neural operators","authors":"Joubine Aghili , Emmanuel Franck , Romain Hild , Victor Michel-Dansac , Vincent Vigon","doi":"10.1016/j.cnsns.2024.108434","DOIUrl":null,"url":null,"abstract":"<div><div>It is well known that Newton’s method can have trouble converging if the initial guess is too far from the solution. Such a problem particularly occurs when this method is used to solve nonlinear elliptic partial differential equations (PDEs) discretized via finite differences. This work focuses on accelerating Newton’s method convergence in this context. We seek to construct a mapping from the parameters of the nonlinear PDE to an approximation of its discrete solution, independently of the mesh resolution. This approximation is then used as an initial guess for Newton’s method. To achieve these objectives, we elect to use a Fourier neural operator (FNO). The loss function is the sum of a data term (i.e., the comparison between known solutions and outputs of the FNO) and a physical term (i.e., the residual of the PDE discretization). Numerical results, in one and two dimensions, show that the proposed initial guess accelerates the convergence of Newton’s method by a large margin compared to a naive initial guess, especially for highly nonlinear and anisotropic problems, with larger gains on coarse grids.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"140 ","pages":"Article 108434"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424006191","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
It is well known that Newton’s method can have trouble converging if the initial guess is too far from the solution. Such a problem particularly occurs when this method is used to solve nonlinear elliptic partial differential equations (PDEs) discretized via finite differences. This work focuses on accelerating Newton’s method convergence in this context. We seek to construct a mapping from the parameters of the nonlinear PDE to an approximation of its discrete solution, independently of the mesh resolution. This approximation is then used as an initial guess for Newton’s method. To achieve these objectives, we elect to use a Fourier neural operator (FNO). The loss function is the sum of a data term (i.e., the comparison between known solutions and outputs of the FNO) and a physical term (i.e., the residual of the PDE discretization). Numerical results, in one and two dimensions, show that the proposed initial guess accelerates the convergence of Newton’s method by a large margin compared to a naive initial guess, especially for highly nonlinear and anisotropic problems, with larger gains on coarse grids.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.