Enhancing nitrous oxide chemiresistive sensing performance by reducing ionic Oxygen species adsorption in Gold functionalized Tungsten Trioxide nanofibers

IF 6.5 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Dung Thi Hanh To, Bingxin Yang, Nosang Vincent Myung
{"title":"Enhancing nitrous oxide chemiresistive sensing performance by reducing ionic Oxygen species adsorption in Gold functionalized Tungsten Trioxide nanofibers","authors":"Dung Thi Hanh To,&nbsp;Bingxin Yang,&nbsp;Nosang Vincent Myung","doi":"10.1016/j.snr.2024.100255","DOIUrl":null,"url":null,"abstract":"<div><div>Low-cost nitrous oxide (N<sub>2</sub>O) gas sensor is in great need to provide real-time information to various stakeholders. Herein, various gold functionalized tungsten trioxide nanofibers (Au-WO<sub>3</sub> NFs) with different composition and crystallinity were synthesized by controlling electrospinning solutions and post heat treatment. These sensing materials were systematically exposed to various N<sub>2</sub>O concentrations at different operating temperatures (<em>i.e.,</em> 250 to 450 °C). Among different samples, 1 at % gold functionalized WO<sub>3</sub> nanofibers (1 at % Au-WO<sub>3</sub> NF) annealed at 600 °C for 24 h shows the highest sensitivity (<em>S</em> = R<sub>a</sub>/R<sub>o</sub>) of 38.5 toward 100 ppm at 250 °C with experimentally determined limit of detection (LOD) at 2.5 ppm. Although recovery and recovery time improved, the sensitivity reduced with an increase in operating temperatures. The detailed sensing mechanism studies indicated that the high N<sub>2</sub>O sensing was achieved when there were limited adsorbed ionized oxygen species (<em>e.g.,</em> O<sup>-</sup>). Moreover, N<sub>2</sub>O adsorption and desorption activation energy were estimated to be 0.13 and 0.87 eV where desorption was more strongly temperature dependent than adsorption.</div></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"8 ","pages":"Article 100255"},"PeriodicalIF":6.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053924000717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Low-cost nitrous oxide (N2O) gas sensor is in great need to provide real-time information to various stakeholders. Herein, various gold functionalized tungsten trioxide nanofibers (Au-WO3 NFs) with different composition and crystallinity were synthesized by controlling electrospinning solutions and post heat treatment. These sensing materials were systematically exposed to various N2O concentrations at different operating temperatures (i.e., 250 to 450 °C). Among different samples, 1 at % gold functionalized WO3 nanofibers (1 at % Au-WO3 NF) annealed at 600 °C for 24 h shows the highest sensitivity (S = Ra/Ro) of 38.5 toward 100 ppm at 250 °C with experimentally determined limit of detection (LOD) at 2.5 ppm. Although recovery and recovery time improved, the sensitivity reduced with an increase in operating temperatures. The detailed sensing mechanism studies indicated that the high N2O sensing was achieved when there were limited adsorbed ionized oxygen species (e.g., O-). Moreover, N2O adsorption and desorption activation energy were estimated to be 0.13 and 0.87 eV where desorption was more strongly temperature dependent than adsorption.
通过减少金功能化三氧化钨纳米纤维中的离子氧吸附,提高氧化亚氮化学电阻传感性能
低成本的一氧化二氮(N2O)气体传感器非常需要为各利益相关方提供实时信息。本文通过控制电纺丝溶液和后热处理合成了各种不同成分和结晶度的金功能化三氧化钨纳米纤维(Au-WO3 NFs)。这些传感材料在不同的工作温度(即 250 至 450 °C)下系统地暴露于不同浓度的一氧化二氮中。在不同的样品中,1% 的金功能化 WO3 纳米纤维(1% 的 Au-WO3 NF)在 600 °C 下退火 24 小时后显示出最高的灵敏度(S = Ra/Ro),在 250 °C 下对 100 ppm 的灵敏度为 38.5,实验确定的检测限(LOD)为 2.5 ppm。虽然回收率和回收时间有所提高,但灵敏度却随着工作温度的升高而降低。详细的传感机理研究表明,当吸附的电离氧物种(如 O-)有限时,就能实现对 N2O 的高度传感。此外,N2O 的吸附和解吸活化能估计分别为 0.13 和 0.87 eV,其中解吸比吸附更依赖于温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
60
审稿时长
49 days
期刊介绍: Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications. For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信