Xuan Hou , Yunpeng Bai , Yefan Xie , Yunfeng Zhang , Lei Fu , Ying Li , Changjing Shang , Qiang Shen
{"title":"Self-supervised multimodal change detection based on difference contrast learning for remote sensing imagery","authors":"Xuan Hou , Yunpeng Bai , Yefan Xie , Yunfeng Zhang , Lei Fu , Ying Li , Changjing Shang , Qiang Shen","doi":"10.1016/j.patcog.2024.111148","DOIUrl":null,"url":null,"abstract":"<div><div>Most existing change detection (CD) methods target homogeneous images. However, in real-world scenarios like disaster management, where CD is urgent and pre-changed and post-changed images are typical of different modalities, significant challenges arise for multimodal change detection (MCD). One challenge is that bi-temporal image pairs, sourced from distinct sensors, may cause an image domain gap. Another issue surfaces when multimodal bi-temporal image pairs require collaborative input from domain experts who are specialised among different image fields for pixel-level annotation, resulting in scarce annotated samples. To address these challenges, this paper proposes a novel self-supervised difference contrast learning framework (Self-DCF). This framework facilitates networks training without labelled samples by automatically exploiting the feature information inherent in bi-temporal imagery to supervise each other mutually. Additionally, a Unified Mapping Unit reduces the domain gap between different modal images. The efficiency and robustness of Self-DCF are validated on five popular datasets, outperforming state-of-the-art algorithms.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"159 ","pages":"Article 111148"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324008999","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Most existing change detection (CD) methods target homogeneous images. However, in real-world scenarios like disaster management, where CD is urgent and pre-changed and post-changed images are typical of different modalities, significant challenges arise for multimodal change detection (MCD). One challenge is that bi-temporal image pairs, sourced from distinct sensors, may cause an image domain gap. Another issue surfaces when multimodal bi-temporal image pairs require collaborative input from domain experts who are specialised among different image fields for pixel-level annotation, resulting in scarce annotated samples. To address these challenges, this paper proposes a novel self-supervised difference contrast learning framework (Self-DCF). This framework facilitates networks training without labelled samples by automatically exploiting the feature information inherent in bi-temporal imagery to supervise each other mutually. Additionally, a Unified Mapping Unit reduces the domain gap between different modal images. The efficiency and robustness of Self-DCF are validated on five popular datasets, outperforming state-of-the-art algorithms.
期刊介绍:
The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.