Changzhong Li , Chenglong Wang , Yanyu Sun , Ronghua Chen , Wenxi Tian , Guanghui Su , Suizheng Qiu
{"title":"Experimental investigation on flow and heat transfer characteristics of helium in rectangular narrow slit channel","authors":"Changzhong Li , Chenglong Wang , Yanyu Sun , Ronghua Chen , Wenxi Tian , Guanghui Su , Suizheng Qiu","doi":"10.1016/j.ijthermalsci.2024.109530","DOIUrl":null,"url":null,"abstract":"<div><div>Helium is utilized as coolant in high temperature gas cooled reactors. Rectangular narrow slit channels are commonly present in the core. The flow and heat transfer properties of helium significantly affect the core temperature and flow distribution. This paper experimentally investigates the flow and heat transfer properties of high temperature helium in rectangular narrow slit channel. The Reynolds numbers ranged from 468 to 9357, the temperature ratio of wall to bulk from 0.91 to 1.22, the helium outlet temperature up to 945 K, and the maximum heat flux density up to 0.101 MW/m<sup>2</sup>. In the experiment, the total and local convective heat transfer coefficients, along with the friction factors, are measured. Correlation equations for the Nusselt number and friction factor with respect to Reynolds number are derived. The primary findings are as below: the friction factors of helium in rectangular narrow slit channels are significantly larger than those calculated by current empirical correlations. In the turbulent zone, the measured local Nusselt numbers are in excellent accordance with the Gnielinski correlation; however, a significant discrepancy exists in the laminar zone. New flow heat transfer correlation equations are proposed on the bases of experimental data. Upon comparison, the total Nusselt numbers fall in the error of 10 %, and almost all local Nusselt numbers and the friction factors fall in the error of 20 %.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"209 ","pages":"Article 109530"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924006525","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Helium is utilized as coolant in high temperature gas cooled reactors. Rectangular narrow slit channels are commonly present in the core. The flow and heat transfer properties of helium significantly affect the core temperature and flow distribution. This paper experimentally investigates the flow and heat transfer properties of high temperature helium in rectangular narrow slit channel. The Reynolds numbers ranged from 468 to 9357, the temperature ratio of wall to bulk from 0.91 to 1.22, the helium outlet temperature up to 945 K, and the maximum heat flux density up to 0.101 MW/m2. In the experiment, the total and local convective heat transfer coefficients, along with the friction factors, are measured. Correlation equations for the Nusselt number and friction factor with respect to Reynolds number are derived. The primary findings are as below: the friction factors of helium in rectangular narrow slit channels are significantly larger than those calculated by current empirical correlations. In the turbulent zone, the measured local Nusselt numbers are in excellent accordance with the Gnielinski correlation; however, a significant discrepancy exists in the laminar zone. New flow heat transfer correlation equations are proposed on the bases of experimental data. Upon comparison, the total Nusselt numbers fall in the error of 10 %, and almost all local Nusselt numbers and the friction factors fall in the error of 20 %.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.