{"title":"Incremental feature selection: Parallel approach with local neighborhood rough sets and composite entropy","authors":"Weihua Xu, Weirui Ye","doi":"10.1016/j.patcog.2024.111141","DOIUrl":null,"url":null,"abstract":"<div><div>Rough set theory is a powerful mathematical framework for managing uncertainty and is widely utilized in feature selection. However, traditional rough set-based feature selection algorithms encounter significant challenges, especially when processing large-scale incremental data and adapting to the dynamic nature of real-world scenarios, where both data volume and feature sets are continuously changing. To overcome these limitations, this study proposes an innovative algorithm that integrates local neighborhood rough sets with composite entropy to measure uncertainty in information systems more accurately. By incorporating decision distribution, composite entropy enhances the precision of uncertainty quantification, thereby improving the effectiveness of the algorithm in feature selection. To further improve performance in handling large-scale incremental data, matrix operations are employed in place of traditional set-based methods, allowing the algorithm to fully utilize modern hardware capabilities for accelerated processing. Additionally, parallel computing technology is integrated to further enhance computational speed. An incremental version of the algorithm is also introduced to better adapt to dynamic data environments, increasing its flexibility and practicality. Comprehensive experimental evaluations demonstrate that the proposed algorithm significantly surpasses existing methods in both effectiveness and efficiency.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"159 ","pages":"Article 111141"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324008926","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Rough set theory is a powerful mathematical framework for managing uncertainty and is widely utilized in feature selection. However, traditional rough set-based feature selection algorithms encounter significant challenges, especially when processing large-scale incremental data and adapting to the dynamic nature of real-world scenarios, where both data volume and feature sets are continuously changing. To overcome these limitations, this study proposes an innovative algorithm that integrates local neighborhood rough sets with composite entropy to measure uncertainty in information systems more accurately. By incorporating decision distribution, composite entropy enhances the precision of uncertainty quantification, thereby improving the effectiveness of the algorithm in feature selection. To further improve performance in handling large-scale incremental data, matrix operations are employed in place of traditional set-based methods, allowing the algorithm to fully utilize modern hardware capabilities for accelerated processing. Additionally, parallel computing technology is integrated to further enhance computational speed. An incremental version of the algorithm is also introduced to better adapt to dynamic data environments, increasing its flexibility and practicality. Comprehensive experimental evaluations demonstrate that the proposed algorithm significantly surpasses existing methods in both effectiveness and efficiency.
期刊介绍:
The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.