Optimised 0D model for the simulation of single iron particle combustion

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2024-11-11 DOI:10.1016/j.fuel.2024.133436
Marcel Kuhmann, Vincent Robin, Ashwin Chinnayya, Zakaria Bouali
{"title":"Optimised 0D model for the simulation of single iron particle combustion","authors":"Marcel Kuhmann,&nbsp;Vincent Robin,&nbsp;Ashwin Chinnayya,&nbsp;Zakaria Bouali","doi":"10.1016/j.fuel.2024.133436","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a 0D modelling strategy for the combustion of a single iron particle. The primary objective was to accurately represent the evolution of the particle temperature, including key parameters such as the peak temperature <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>max</mi></mrow></msub></math></span> and associated characteristic burn time <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span>, and oxidation dynamics in a wide range of conditions. An optimisation approach, rather than a purely mechanistic model, was chosen to further close the current gap between numerical simulations and experimental observations. The model considers oxidation processes, heat transfer, solid–liquid phase changes and dissociative evaporation. Intra-particle reaction rates are controlled by external <span><math><msub><mrow><mtext>O</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> diffusion combined with an optimised <span><math><msub><mrow><mtext>O</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> absorption reduction quantity <span><math><mi>γ</mi></math></span>, but at the end of the combustion process by a more adequate empirical kinetic rate. A first combustion stage involving the reaction <span><math><mrow><mn>2</mn><mtext>Fe</mtext><mo>+</mo><msub><mrow><mtext>O</mtext></mrow><mrow><mn>2</mn></mrow></msub><mo>→</mo><mn>2</mn><mtext>FeO</mtext></mrow></math></span> is followed by two successive stages with the respective reactions <span><math><mrow><mn>6</mn><mtext>FeO</mtext><mo>+</mo><msub><mrow><mtext>O</mtext></mrow><mrow><mn>2</mn></mrow></msub><mo>→</mo><mn>2</mn><msub><mrow><mtext>Fe</mtext></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mtext>O</mtext></mrow><mrow><mn>4</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mn>4</mn><msub><mrow><mtext>Fe</mtext></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mtext>O</mtext></mrow><mrow><mn>4</mn></mrow></msub><mo>+</mo><msub><mrow><mtext>O</mtext></mrow><mrow><mn>2</mn></mrow></msub><mo>→</mo><mn>6</mn><msub><mrow><mtext>Fe</mtext></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mtext>O</mtext></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span>. This oxidation strategy is based on the Fe-O phase diagram and experimental observations of oxidation beyond FeO. Mass and enthalpy balances for the particle gave its temperature evolution, which was compared with experimental data and state of the art modelling approaches. The numerical overestimation of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>max</mi></mrow></msub></math></span> in environments with elevated <span><math><msub><mrow><mtext>O</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> concentration was addressed via the optimised quantity <span><math><mi>γ</mi></math></span>, which was modelled as piecewise constant, changing once at a predetermined burn time based on experimental measurements of the burn time <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span>. Correlations for the moment of reduction of the quantity <span><math><mi>γ</mi></math></span> and for its initial value were introduced, both related to the initial particle diameter and <span><math><msub><mrow><mtext>O</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> molar fraction in the gas. Further model refinement is required to enhance the accuracy of simulated cooling rates in high-temperature combustion environments, where experimental data are particularly scarce. In another scenario, characterised by reduced <span><math><msub><mrow><mtext>O</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> conditions and hitherto unexplored in the numerical modelling literature, an underestimation of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>max</mi></mrow></msub></math></span> was found even assuming the maximum possible oxidation rate. This observation has prompted the authors to question the suitability of the correlations used in existing models to calculate the convection coefficient, which seems to be slightly overestimated. The proposed simple and efficient modelling framework has demonstrated its potential ability to accurately reproduce key combustion characteristics of a burning iron particle in a wide range of conditions. And it will thus serve as a good starting point for the simulation of heterogeneous particle-laden reactive flows.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"381 ","pages":"Article 133436"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124025857","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a 0D modelling strategy for the combustion of a single iron particle. The primary objective was to accurately represent the evolution of the particle temperature, including key parameters such as the peak temperature Tmax and associated characteristic burn time τb, and oxidation dynamics in a wide range of conditions. An optimisation approach, rather than a purely mechanistic model, was chosen to further close the current gap between numerical simulations and experimental observations. The model considers oxidation processes, heat transfer, solid–liquid phase changes and dissociative evaporation. Intra-particle reaction rates are controlled by external O2 diffusion combined with an optimised O2 absorption reduction quantity γ, but at the end of the combustion process by a more adequate empirical kinetic rate. A first combustion stage involving the reaction 2Fe+O22FeO is followed by two successive stages with the respective reactions 6FeO+O22Fe3O4 and 4Fe3O4+O26Fe2O3. This oxidation strategy is based on the Fe-O phase diagram and experimental observations of oxidation beyond FeO. Mass and enthalpy balances for the particle gave its temperature evolution, which was compared with experimental data and state of the art modelling approaches. The numerical overestimation of Tmax in environments with elevated O2 concentration was addressed via the optimised quantity γ, which was modelled as piecewise constant, changing once at a predetermined burn time based on experimental measurements of the burn time τb. Correlations for the moment of reduction of the quantity γ and for its initial value were introduced, both related to the initial particle diameter and O2 molar fraction in the gas. Further model refinement is required to enhance the accuracy of simulated cooling rates in high-temperature combustion environments, where experimental data are particularly scarce. In another scenario, characterised by reduced O2 conditions and hitherto unexplored in the numerical modelling literature, an underestimation of Tmax was found even assuming the maximum possible oxidation rate. This observation has prompted the authors to question the suitability of the correlations used in existing models to calculate the convection coefficient, which seems to be slightly overestimated. The proposed simple and efficient modelling framework has demonstrated its potential ability to accurately reproduce key combustion characteristics of a burning iron particle in a wide range of conditions. And it will thus serve as a good starting point for the simulation of heterogeneous particle-laden reactive flows.
用于模拟单个铁颗粒燃烧的优化 0D 模型
本文提出了单个铁颗粒燃烧的 0D 建模策略。其主要目标是准确表示颗粒温度的演变,包括峰值温度 Tmax 和相关特征燃烧时间 τb 等关键参数,以及各种条件下的氧化动态。为了进一步缩小目前数值模拟与实验观测之间的差距,我们选择了优化方法,而不是纯粹的机理模型。该模型考虑了氧化过程、热传递、固液相变和离解蒸发。粒子内反应速率由外部 O2 扩散结合优化的 O2 吸收还原量 γ 控制,但在燃烧过程结束时则由更充分的经验动力学速率控制。第一个燃烧阶段包括 2Fe+O2→2FeO 反应,随后是两个连续的阶段,分别发生 6FeO+O2→2Fe3O4 和 4Fe3O4+O2→6Fe2O3 反应。这种氧化策略是基于 Fe-O 相图和对 FeO 以外氧化的实验观察。粒子的质量和焓平衡给出了其温度演变过程,并与实验数据和最先进的建模方法进行了比较。通过优化量 γ 解决了在氧气浓度升高的环境中 Tmax 被数值高估的问题,γ 被模拟为片断常数,根据燃烧时间 τb 的实验测量结果,在预定的燃烧时间改变一次。引入了 γ 量减少时刻及其初始值的相关性,两者都与初始粒子直径和气体中的氧气摩尔分数有关。需要进一步完善模型,以提高高温燃烧环境下模拟冷却速率的准确性,因为这种环境下的实验数据尤为缺乏。在另一种情况下,即使假设氧化速率达到最大可能值,也会发现 Tmax 值被低估。这一观察结果促使作者对现有模型中用于计算对流系数的相关性提出质疑,因为对流系数似乎被略微高估了。所提出的简单高效的建模框架已经证明了其潜在的能力,可以在广泛的条件下准确地再现燃烧铁粒子的关键燃烧特征。因此,它将成为模拟异质颗粒反应流的良好起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信