Jiahao Zhang , Xiang Li , Junhui Liu , Junna Liu , Jun Zhang
{"title":"Enhanced impacts of reduction on Co3O4 model catalysts by NaBH4 in the hydrolysis of ammonia borane","authors":"Jiahao Zhang , Xiang Li , Junhui Liu , Junna Liu , Jun Zhang","doi":"10.1016/j.fuel.2024.133716","DOIUrl":null,"url":null,"abstract":"<div><div>The development of efficient and cost-effective nano catalysts for the room-temperature hydrolysis of ammonia borane (AB) is crucial for its practical utilization in hydrogen (H<sub>2</sub>)-based fuel cells. This study specifically investigates the promotional effects on reduced Co<sub>3</sub>O<sub>4</sub> catalysts induced by varying amounts of NaBH<sub>4</sub> during the hydrolytic dehydrogenation of ammonia borane. The morphology, structure, surface chemical states and magnetic property of Co<sub>3</sub>O<sub>4</sub> before and after reduction were comprehensively analyzed to elucidate the factors influencing catalytic behavior during hydrolysis. Additionally, DFT calculations were employed to associate the high activity of Co<sub>3</sub>O<sub>4</sub> with two key factors: oxygen vacancies and Co<sup>0</sup> species generated after reduction, resulting in V<sub>O</sub>-rich cobalt/oxide interfaces. Conversely, a slight decrease in catalytic activity was attributed to over-reduction leading to an excess of Co<sup>0</sup> species dominating the catalysts. It can be inferred that the oxide phase not only acts as a precursor and support for the reduced nanosized cobalt active component but also serves as a critical catalyst component that enhances water activation.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"381 ","pages":"Article 133716"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124028655","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The development of efficient and cost-effective nano catalysts for the room-temperature hydrolysis of ammonia borane (AB) is crucial for its practical utilization in hydrogen (H2)-based fuel cells. This study specifically investigates the promotional effects on reduced Co3O4 catalysts induced by varying amounts of NaBH4 during the hydrolytic dehydrogenation of ammonia borane. The morphology, structure, surface chemical states and magnetic property of Co3O4 before and after reduction were comprehensively analyzed to elucidate the factors influencing catalytic behavior during hydrolysis. Additionally, DFT calculations were employed to associate the high activity of Co3O4 with two key factors: oxygen vacancies and Co0 species generated after reduction, resulting in VO-rich cobalt/oxide interfaces. Conversely, a slight decrease in catalytic activity was attributed to over-reduction leading to an excess of Co0 species dominating the catalysts. It can be inferred that the oxide phase not only acts as a precursor and support for the reduced nanosized cobalt active component but also serves as a critical catalyst component that enhances water activation.
期刊介绍:
The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.