Elena Sitnikova , Mingming Xu , Weiyi Kong , Shoufeng Hu , Shuguang Li
{"title":"Design strategy for 3D layer-to-layer angle interlock woven composites","authors":"Elena Sitnikova , Mingming Xu , Weiyi Kong , Shoufeng Hu , Shuguang Li","doi":"10.1016/j.matdes.2024.113414","DOIUrl":null,"url":null,"abstract":"<div><div>A design strategy for 3D layer-to-layer angle interlock woven composites has been established by employing a set of three key properties of the weave (KPoWs): the global fibre volume fraction, the interlocking angle and the ratio of the weft tow volume to the warp tow volume. Using analytically derived expressions of the KPoWs, their variation trends relative to the manufacturing parameters have been revealed. At the same time, via a range of systematic computational material characterisation exercises, the KPoWs were shown to be sufficient for representing the woven reinforcement as far as the elastic behaviour predictions are concerned, because the effective elastic properties were found to follow consistent variation trends with the KPoWs. As a result, through use of KPoWs, manufacturing parameters have been associated with the effective elastic properties in a systematic manner. This offer means for obtaining a desirable elastic behaviour of 3D woven composites via variation of their internal architecture. The design method developed is the alternative to trial-and-error-based selection method conventionally adopted for this type of materials. As an example of application of the proposed method, a woven composite with balanced weft and warp properties has been designed.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"247 ","pages":"Article 113414"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524007895","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A design strategy for 3D layer-to-layer angle interlock woven composites has been established by employing a set of three key properties of the weave (KPoWs): the global fibre volume fraction, the interlocking angle and the ratio of the weft tow volume to the warp tow volume. Using analytically derived expressions of the KPoWs, their variation trends relative to the manufacturing parameters have been revealed. At the same time, via a range of systematic computational material characterisation exercises, the KPoWs were shown to be sufficient for representing the woven reinforcement as far as the elastic behaviour predictions are concerned, because the effective elastic properties were found to follow consistent variation trends with the KPoWs. As a result, through use of KPoWs, manufacturing parameters have been associated with the effective elastic properties in a systematic manner. This offer means for obtaining a desirable elastic behaviour of 3D woven composites via variation of their internal architecture. The design method developed is the alternative to trial-and-error-based selection method conventionally adopted for this type of materials. As an example of application of the proposed method, a woven composite with balanced weft and warp properties has been designed.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.