{"title":"Theoretical study of multipoint ground motion characteristics under V-shaped site induced P1 wave","authors":"Feng Guang-rui, Xie Li-quan","doi":"10.1016/j.compstruc.2024.107583","DOIUrl":null,"url":null,"abstract":"<div><div>An advanced analytical technique known as the Oblique Coordinate Wave Function Integral Method builds on Biot’s wave theory for saturated porous material, has been developed to address seismic wave scattering in irregular media. This method employs an integral representation of scattered waves, solved by using an oblique coordinate transformation within a rectangular coordinate system with wave function series expansion methods. The inverse transformation between rectangular and cylindrical coordinate systems frequently presents convergence issues, this method effectively resolves these issues. Moreover, using a Cartesian coordinate system to solve the scattered wave field, overcomes the limitations of earlier methods. Such as the large arc assumption in wave function series expansion, that often did not meet boundary conditions precisely. In addition, this method’s scattering analytical solutions are used to derive the coherence function of multi-point ground motion from the second-moment correlation function of a random process. Lastly, a sensitivity analysis of key parameters, such as canyon depth, incident frequency, and soil porosity, is performed to assess the robustness of the method.</div></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"305 ","pages":"Article 107583"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924003122","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
An advanced analytical technique known as the Oblique Coordinate Wave Function Integral Method builds on Biot’s wave theory for saturated porous material, has been developed to address seismic wave scattering in irregular media. This method employs an integral representation of scattered waves, solved by using an oblique coordinate transformation within a rectangular coordinate system with wave function series expansion methods. The inverse transformation between rectangular and cylindrical coordinate systems frequently presents convergence issues, this method effectively resolves these issues. Moreover, using a Cartesian coordinate system to solve the scattered wave field, overcomes the limitations of earlier methods. Such as the large arc assumption in wave function series expansion, that often did not meet boundary conditions precisely. In addition, this method’s scattering analytical solutions are used to derive the coherence function of multi-point ground motion from the second-moment correlation function of a random process. Lastly, a sensitivity analysis of key parameters, such as canyon depth, incident frequency, and soil porosity, is performed to assess the robustness of the method.
期刊介绍:
Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.