{"title":"Static, free vibration, and buckling analysis of functionally graded plates using the dual mesh control domain method","authors":"Zeyu Jiao , Tanmaye Heblekar , Guannan Wang , Rongqiao Xu , J.N. Reddy","doi":"10.1016/j.compstruc.2024.107575","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the Dual Mesh Control Domain Method (DMCDM) put forward by Reddy is applied to solve linear static, free vibration, and buckling problems of functionally graded plates modeled using the First-Order Shear Deformation Theory (FSDT). The material properties are assumed to vary continuously through the thickness of the plate according to a power-law. Formulations are presented for linear triangular (3-noded) and bilinear quadrilateral (4-noded) primal elements of arbitrary shape. The influence of the power-law exponents, length to thickness ratio, boundary conditions, and plate skewness on the numerical solution is systematically analyzed. Additionally, the numerical solutions using the DMCDM are compared against those from the Finite Element Method (FEM) to demonstrate the robustness of the DMCDM as a strong competitor to well-established numerical techniques such as the FEM.</div></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"305 ","pages":"Article 107575"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924003043","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the Dual Mesh Control Domain Method (DMCDM) put forward by Reddy is applied to solve linear static, free vibration, and buckling problems of functionally graded plates modeled using the First-Order Shear Deformation Theory (FSDT). The material properties are assumed to vary continuously through the thickness of the plate according to a power-law. Formulations are presented for linear triangular (3-noded) and bilinear quadrilateral (4-noded) primal elements of arbitrary shape. The influence of the power-law exponents, length to thickness ratio, boundary conditions, and plate skewness on the numerical solution is systematically analyzed. Additionally, the numerical solutions using the DMCDM are compared against those from the Finite Element Method (FEM) to demonstrate the robustness of the DMCDM as a strong competitor to well-established numerical techniques such as the FEM.
期刊介绍:
Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.