Numerical modeling of hydro-mechanical processes during hydraulic testing of pre-existing fractures at the Grimsel Test Site, Switzerland

IF 3.3 2区 工程技术 Q3 ENERGY & FUELS
Josselin Ouf , Kavan Khaledi , Philip J. Vardon , Wen Luo , Mohammadreza Jalali , Florian Amann
{"title":"Numerical modeling of hydro-mechanical processes during hydraulic testing of pre-existing fractures at the Grimsel Test Site, Switzerland","authors":"Josselin Ouf ,&nbsp;Kavan Khaledi ,&nbsp;Philip J. Vardon ,&nbsp;Wen Luo ,&nbsp;Mohammadreza Jalali ,&nbsp;Florian Amann","doi":"10.1016/j.gete.2024.100608","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a fully coupled hydro-mechanical framework for modeling hydraulic shearing in a mesoscale reservoir located at the Grimsel Test Site, Switzerland. The experiment was conducted on a ductile–brittle fault embedded in low-permeable granite. We observe that normal fracture opening increases flow channel recoverably, while fracture sliding locks asperities leading to a non-recoverable increase in flow. To couple these processes, we use a poro-elasto-plastic constitutive framework and employ a permeability function that depends on several parameters, such as dilation angle, in-situ stresses, residual aperture and maximum aperture. Our results capture the recorded pressure responses well, and indicate that the permeability changes by one order of magnitude during the experiment.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100608"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380824000753","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a fully coupled hydro-mechanical framework for modeling hydraulic shearing in a mesoscale reservoir located at the Grimsel Test Site, Switzerland. The experiment was conducted on a ductile–brittle fault embedded in low-permeable granite. We observe that normal fracture opening increases flow channel recoverably, while fracture sliding locks asperities leading to a non-recoverable increase in flow. To couple these processes, we use a poro-elasto-plastic constitutive framework and employ a permeability function that depends on several parameters, such as dilation angle, in-situ stresses, residual aperture and maximum aperture. Our results capture the recorded pressure responses well, and indicate that the permeability changes by one order of magnitude during the experiment.
瑞士格里姆塞试验场对已有裂缝进行水力测试期间水力机械过程的数值建模
本研究提出了一个完全耦合的水力机械框架,用于模拟位于瑞士格里姆塞试验场的中尺度水库的水力剪切。实验在嵌入低渗透花岗岩的韧性-脆性断层上进行。我们观察到,正常的断裂张开会增加可恢复的流道,而断裂滑动会锁定尖角,导致不可恢复的流量增加。为了将这些过程结合起来,我们使用了孔弹性塑性构造框架,并采用了取决于多个参数(如扩张角、原位应力、残余孔径和最大孔径)的渗透率函数。我们的结果很好地捕捉到了记录的压力响应,并表明在实验过程中渗透率会发生一个数量级的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geomechanics for Energy and the Environment
Geomechanics for Energy and the Environment Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
11.80%
发文量
87
期刊介绍: The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources. The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信