Shuai Li , Rui Tian , Min Liu , Maksims Arzamasovs , Liangchao Chen , Bo Liu
{"title":"Topological flat band with higher winding number in a superradiance lattice","authors":"Shuai Li , Rui Tian , Min Liu , Maksims Arzamasovs , Liangchao Chen , Bo Liu","doi":"10.1016/j.aop.2024.169837","DOIUrl":null,"url":null,"abstract":"<div><div>A five-level M-type scheme in atomic ensembles is proposed to generate a one-dimensional bipartite superradiance lattice in momentum space. By taking advantage of this tunable atomic system, we show that various types of Su-Schrieffer-Heeger (SSH) model, including the standard SSH and extended SSH model, can be realized. Interestingly, it is shown that through changing the Rabi frequencies and detunings in our proposed scheme, there is a topological phase transition from topological trivial regime with winding number being 0 to topological non-trivial regime with winding number being 2. Furthermore, a robust flat band with higher winding number (being 2) can be achieved in the above topological non-trivial regime, where the superradiance spectra can be utilized as a tool for experimental detection. Our proposal would provide a promising approach to explore new physics, such as fractional topological phases, in the flat bands with higher topological number.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"471 ","pages":"Article 169837"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491624002446","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A five-level M-type scheme in atomic ensembles is proposed to generate a one-dimensional bipartite superradiance lattice in momentum space. By taking advantage of this tunable atomic system, we show that various types of Su-Schrieffer-Heeger (SSH) model, including the standard SSH and extended SSH model, can be realized. Interestingly, it is shown that through changing the Rabi frequencies and detunings in our proposed scheme, there is a topological phase transition from topological trivial regime with winding number being 0 to topological non-trivial regime with winding number being 2. Furthermore, a robust flat band with higher winding number (being 2) can be achieved in the above topological non-trivial regime, where the superradiance spectra can be utilized as a tool for experimental detection. Our proposal would provide a promising approach to explore new physics, such as fractional topological phases, in the flat bands with higher topological number.
期刊介绍:
Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance.
The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.