Spin orbit torque on a curved surface

IF 3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Seng Ghee Tan , Che Chun Huang , Mansoor B.A. Jalil , Zhuobin Siu
{"title":"Spin orbit torque on a curved surface","authors":"Seng Ghee Tan ,&nbsp;Che Chun Huang ,&nbsp;Mansoor B.A. Jalil ,&nbsp;Zhuobin Siu","doi":"10.1016/j.aop.2024.169835","DOIUrl":null,"url":null,"abstract":"<div><div>We provide a general formulation of the spin-orbit coupling on a 2D curved surface. Considering the wide applicability of spin-orbit effect in spinor-based condensed matter physics, a general spin-orbit formulation could aid the study of spintronics, Dirac graphene, topological systems, and quantum information on curved surfaces. Particular attention is then devoted to the development of an important spin-orbit quantity known as the spin-orbit torque. As devices trend smaller in dimension, the physics of local geometries on spin-orbit torque, hence spin and magnetic dynamics shall not be neglected. We derived the general expression of a spin-orbit anisotropy field for the curved surfaces and provided explicit solutions in the special contexts of the spherical, cylindrical and flat coordinates. Our expressions allow spin-orbit anisotropy fields and hence spin-orbit torque to be computed over the entire surfaces of devices of any geometry.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"471 ","pages":"Article 169835"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491624002422","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a general formulation of the spin-orbit coupling on a 2D curved surface. Considering the wide applicability of spin-orbit effect in spinor-based condensed matter physics, a general spin-orbit formulation could aid the study of spintronics, Dirac graphene, topological systems, and quantum information on curved surfaces. Particular attention is then devoted to the development of an important spin-orbit quantity known as the spin-orbit torque. As devices trend smaller in dimension, the physics of local geometries on spin-orbit torque, hence spin and magnetic dynamics shall not be neglected. We derived the general expression of a spin-orbit anisotropy field for the curved surfaces and provided explicit solutions in the special contexts of the spherical, cylindrical and flat coordinates. Our expressions allow spin-orbit anisotropy fields and hence spin-orbit torque to be computed over the entire surfaces of devices of any geometry.
曲面上的旋转轨道扭矩
我们提供了二维曲面上自旋轨道耦合的一般表述。考虑到自旋轨道效应在基于自旋子的凝聚态物理中的广泛适用性,一般的自旋轨道表述有助于研究自旋电子学、狄拉克石墨烯、拓扑系统以及曲面上的量子信息。接下来,我们将特别关注被称为自旋轨道力矩的重要自旋轨道量的发展。随着设备尺寸越来越小,局部几何结构对自旋轨道力矩的影响,以及自旋和磁动力学的影响也不容忽视。我们推导出了曲面自旋轨道各向异性场的一般表达式,并在球面、圆柱和平面坐标的特殊情况下提供了明确的解决方案。我们的表达式允许在任何几何形状的设备的整个表面上计算自旋轨道各向异性场以及自旋轨道力矩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Physics
Annals of Physics 物理-物理:综合
CiteScore
5.30
自引率
3.30%
发文量
211
审稿时长
47 days
期刊介绍: Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance. The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信