A 3-DOF spreading precision positional stage for ductile end-face fly-cutting of quartz glass

IF 3.5 2区 工程技术 Q2 ENGINEERING, MANUFACTURING
Bingrui Lv , Bin Lin , Tianyi Sui , Jinshuo Zhang , Longfei Wang , Jingguo Zhou , Pengcheng Zhao , Jinming Li
{"title":"A 3-DOF spreading precision positional stage for ductile end-face fly-cutting of quartz glass","authors":"Bingrui Lv ,&nbsp;Bin Lin ,&nbsp;Tianyi Sui ,&nbsp;Jinshuo Zhang ,&nbsp;Longfei Wang ,&nbsp;Jingguo Zhou ,&nbsp;Pengcheng Zhao ,&nbsp;Jinming Li","doi":"10.1016/j.precisioneng.2024.10.014","DOIUrl":null,"url":null,"abstract":"<div><div>Ductile removal is widely employed to eliminate subsurface damage in brittle materials. Achieving this requires the cutting depth to be set extremely low, presenting significant challenges for error compensation and precise feeding of the machine tool. In this paper, a novel three-degree-of-freedom spreading precision positioning stage is developed to mitigate the effects of workpiece deflection errors and feed resolution on the depth of cut during the end-face fly-cutting process. First, a bridge and half-bridge composite structure is designed to facilitate the planar spreading of the spatial motion mechanism. A mathematical model of the composite structure is developed based on elastic beam theory. Second, the effects of various structural parameters on the amplification ratio of the structure are investigated. The accuracy of the theoretical model is verified by finite element analysis. Finally, ductile fly-cutting experiments on quartz glass are conducted using a precision 5-axis machine tool.</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"91 ","pages":"Pages 660-677"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635924002411","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Ductile removal is widely employed to eliminate subsurface damage in brittle materials. Achieving this requires the cutting depth to be set extremely low, presenting significant challenges for error compensation and precise feeding of the machine tool. In this paper, a novel three-degree-of-freedom spreading precision positioning stage is developed to mitigate the effects of workpiece deflection errors and feed resolution on the depth of cut during the end-face fly-cutting process. First, a bridge and half-bridge composite structure is designed to facilitate the planar spreading of the spatial motion mechanism. A mathematical model of the composite structure is developed based on elastic beam theory. Second, the effects of various structural parameters on the amplification ratio of the structure are investigated. The accuracy of the theoretical model is verified by finite element analysis. Finally, ductile fly-cutting experiments on quartz glass are conducted using a precision 5-axis machine tool.

Abstract Image

用于石英玻璃韧性端面飞切的 3-DOF 平展精密定位平台
为消除脆性材料的表面下损伤,广泛采用了延展去除技术。要实现这一目标,需要将切削深度设置得极低,这给机床的误差补偿和精确进给带来了巨大挑战。本文开发了一种新型三自由度展开式精密定位平台,以减轻端面飞切过程中工件挠度误差和进给分辨率对切削深度的影响。首先,设计了一种桥式和半桥式复合结构,以促进空间运动机构的平面展开。根据弹性梁理论建立了复合结构的数学模型。其次,研究了各种结构参数对结构放大率的影响。有限元分析验证了理论模型的准确性。最后,使用精密五轴机床对石英玻璃进行了韧性飞切实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
5.60%
发文量
177
审稿时长
46 days
期刊介绍: Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信