Performance analysis and optimization of secondary U-shaped double-sided toroidal winding linear permanent magnet vernier machine

IF 5.1 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Xiaozhuo Xu , Sen Miao , Siyuan Jiang , Haichao Feng , Liwang Ai
{"title":"Performance analysis and optimization of secondary U-shaped double-sided toroidal winding linear permanent magnet vernier machine","authors":"Xiaozhuo Xu ,&nbsp;Sen Miao ,&nbsp;Siyuan Jiang ,&nbsp;Haichao Feng ,&nbsp;Liwang Ai","doi":"10.1016/j.jestch.2024.101885","DOIUrl":null,"url":null,"abstract":"<div><div>Aiming at the issues of low thrust density, significant thrust ripple, the lengthy end and the large axial attraction force in conventional single-sided distributed winding linear permanent magnet vernier machine (LPMVM), this paper presents an enhanced U-shaped double-sided toroidal winding linear permanent magnet vernier machine (US-DTWLPMVM). Firstly, the topology of US-DTWLPMVM is introduced and the flux concentration effect of the U-shaped permanent magnet structure is analyzed using the equivalent magnetic circuit method. The operation principle of US-DTWLPMVM is analyzed based on the principle of magnetic field modulation. Subsequently, the US-DTWLPMVM multi-objective optimization is performed using the Taguchi-RSM-Egret Swarm Optimization Algorithm (ESOA). Then, combined with the surface-mounted and Halbach PM structure double-sided toroidal winding linear permanent magnet vernier machine (DTWLPMVM), the impact of the U-shaped permanent magnet structure on the magnetic field and the resulting differences in thrust performance of the DTWLPMVM are investigated. Finally, the related experimental tests of US-DTWLPMVM are carried out to verify the reliability of the theoretical analysis and finite element simulation results. The results show that, the proposed US-DTWLPMVM confers several advantages. These include the improvement of winding ends, an increase in the thrust density of the motor, and a reduction in thrust ripple and balance of the attractive forces of the mover.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"59 ","pages":"Article 101885"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Science and Technology-An International Journal-Jestech","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215098624002714","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the issues of low thrust density, significant thrust ripple, the lengthy end and the large axial attraction force in conventional single-sided distributed winding linear permanent magnet vernier machine (LPMVM), this paper presents an enhanced U-shaped double-sided toroidal winding linear permanent magnet vernier machine (US-DTWLPMVM). Firstly, the topology of US-DTWLPMVM is introduced and the flux concentration effect of the U-shaped permanent magnet structure is analyzed using the equivalent magnetic circuit method. The operation principle of US-DTWLPMVM is analyzed based on the principle of magnetic field modulation. Subsequently, the US-DTWLPMVM multi-objective optimization is performed using the Taguchi-RSM-Egret Swarm Optimization Algorithm (ESOA). Then, combined with the surface-mounted and Halbach PM structure double-sided toroidal winding linear permanent magnet vernier machine (DTWLPMVM), the impact of the U-shaped permanent magnet structure on the magnetic field and the resulting differences in thrust performance of the DTWLPMVM are investigated. Finally, the related experimental tests of US-DTWLPMVM are carried out to verify the reliability of the theoretical analysis and finite element simulation results. The results show that, the proposed US-DTWLPMVM confers several advantages. These include the improvement of winding ends, an increase in the thrust density of the motor, and a reduction in thrust ripple and balance of the attractive forces of the mover.
次级 U 型双面环形绕组线性永磁游标机的性能分析与优化
针对传统单面分布式绕组直线永磁游标机(LPMVM)推力密度低、推力纹波大、端部长、轴向吸引力大等问题,本文提出了一种增强型 U 形双面环形绕组直线永磁游标机(US-DTWLPMVM)。首先介绍了 US-DTWLPMVM 的拓扑结构,并利用等效磁路法分析了 U 型永磁结构的磁通集中效应。根据磁场调制原理分析了 US-DTWLPMVM 的工作原理。随后,利用 Taguchi-RSM-Egret Swarm Optimization Algorithm (ESOA) 算法对 US-DTWLPMVM 进行了多目标优化。然后,结合表面安装和哈尔巴赫永磁结构的双面环形绕组线性永磁游标机(DTWLPMVM),研究了 U 型永磁结构对磁场的影响以及由此导致的 DTWLPMVM 推力性能差异。最后,对 US-DTWLPMVM 进行了相关实验测试,以验证理论分析和有限元模拟结果的可靠性。结果表明,所提出的 US-DTWLPMVM 具有多个优点。这些优点包括绕组端部的改进、电机推力密度的增加、推力波纹的减小以及动子吸引力的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Science and Technology-An International Journal-Jestech
Engineering Science and Technology-An International Journal-Jestech Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.20
自引率
3.50%
发文量
153
审稿时长
22 days
期刊介绍: Engineering Science and Technology, an International Journal (JESTECH) (formerly Technology), a peer-reviewed quarterly engineering journal, publishes both theoretical and experimental high quality papers of permanent interest, not previously published in journals, in the field of engineering and applied science which aims to promote the theory and practice of technology and engineering. In addition to peer-reviewed original research papers, the Editorial Board welcomes original research reports, state-of-the-art reviews and communications in the broadly defined field of engineering science and technology. The scope of JESTECH includes a wide spectrum of subjects including: -Electrical/Electronics and Computer Engineering (Biomedical Engineering and Instrumentation; Coding, Cryptography, and Information Protection; Communications, Networks, Mobile Computing and Distributed Systems; Compilers and Operating Systems; Computer Architecture, Parallel Processing, and Dependability; Computer Vision and Robotics; Control Theory; Electromagnetic Waves, Microwave Techniques and Antennas; Embedded Systems; Integrated Circuits, VLSI Design, Testing, and CAD; Microelectromechanical Systems; Microelectronics, and Electronic Devices and Circuits; Power, Energy and Energy Conversion Systems; Signal, Image, and Speech Processing) -Mechanical and Civil Engineering (Automotive Technologies; Biomechanics; Construction Materials; Design and Manufacturing; Dynamics and Control; Energy Generation, Utilization, Conversion, and Storage; Fluid Mechanics and Hydraulics; Heat and Mass Transfer; Micro-Nano Sciences; Renewable and Sustainable Energy Technologies; Robotics and Mechatronics; Solid Mechanics and Structure; Thermal Sciences) -Metallurgical and Materials Engineering (Advanced Materials Science; Biomaterials; Ceramic and Inorgnanic Materials; Electronic-Magnetic Materials; Energy and Environment; Materials Characterizastion; Metallurgy; Polymers and Nanocomposites)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信