The phylogeny number of a graph in the aspect of its triangles and diamonds

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Soogang Eoh, Suh-Ryung Kim, Hojun Lee
{"title":"The phylogeny number of a graph in the aspect of its triangles and diamonds","authors":"Soogang Eoh,&nbsp;Suh-Ryung Kim,&nbsp;Hojun Lee","doi":"10.1016/j.dam.2024.10.028","DOIUrl":null,"url":null,"abstract":"<div><div>The phylogeny graph of a digraph <span><math><mi>D</mi></math></span>, denoted by <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span>, has the vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> and an edge <span><math><mrow><mi>u</mi><mi>v</mi></mrow></math></span> if and only if <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></math></span> or <span><math><mrow><mo>(</mo><mi>v</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow></math></span> is an arc of <span><math><mi>D</mi></math></span> or <span><math><mi>u</mi></math></span> and <span><math><mi>v</mi></math></span> have a common out-neighbor in <span><math><mi>D</mi></math></span>. The notion of phylogeny graphs was introduced by Roberts and Sheng (1997) as a variant of competition graph. Moral graphs having arisen from studying Bayesian networks are the same as phylogeny graphs. Any acyclic digraph <span><math><mi>D</mi></math></span> for which <span><math><mi>G</mi></math></span> is an induced subgraph of <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> and such that <span><math><mi>D</mi></math></span> has no arcs from vertices outside of <span><math><mi>G</mi></math></span> to vertices in <span><math><mi>G</mi></math></span> is called a phylogeny digraph for <span><math><mi>G</mi></math></span>.</div><div>The phylogeny number <span><math><mrow><mi>p</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span> is the smallest <span><math><mi>r</mi></math></span> so that <span><math><mi>G</mi></math></span> has a phylogeny digraph <span><math><mi>D</mi></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>∖</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>=</mo><mi>r</mi></mrow></math></span>. In this paper, we integrate the existing theorems computing phylogeny numbers of connected graph with a small number of triangles into one proposition: for a graph <span><math><mi>G</mi></math></span> containing at most two triangle, <span><math><mrow><mrow><mo>|</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>−</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>−</mo><mn>2</mn><mi>t</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn><mo>≤</mo><mi>p</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>|</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>−</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>−</mo><mi>t</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> where <span><math><mrow><mi>t</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denote the number of triangles and the number of diamonds in <span><math><mi>G</mi></math></span>, respectively. Then we show that these inequalities hold for graphs with many triangles. In the process of showing it, we derive a useful theorem which plays a key role in deducing various meaningful results including a theorem that answers a question given by Wu et al. (2019).</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"361 ","pages":"Pages 304-314"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004529","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The phylogeny graph of a digraph D, denoted by P(D), has the vertex set V(D) and an edge uv if and only if (u,v) or (v,u) is an arc of D or u and v have a common out-neighbor in D. The notion of phylogeny graphs was introduced by Roberts and Sheng (1997) as a variant of competition graph. Moral graphs having arisen from studying Bayesian networks are the same as phylogeny graphs. Any acyclic digraph D for which G is an induced subgraph of P(D) and such that D has no arcs from vertices outside of G to vertices in G is called a phylogeny digraph for G.
The phylogeny number p(G) of G is the smallest r so that G has a phylogeny digraph D with |V(D)V(G)|=r. In this paper, we integrate the existing theorems computing phylogeny numbers of connected graph with a small number of triangles into one proposition: for a graph G containing at most two triangle, |E(G)||V(G)|2t(G)+d(G)+1p(G)|E(G)||V(G)|t(G)+1 where t(G) and d(G) denote the number of triangles and the number of diamonds in G, respectively. Then we show that these inequalities hold for graphs with many triangles. In the process of showing it, we derive a useful theorem which plays a key role in deducing various meaningful results including a theorem that answers a question given by Wu et al. (2019).
三角形和菱形图的系统发生数
当且仅当(u,v)或(v,u)是 D 的弧或 u 和 v 在 D 中有共同的外邻时,数字图 D 的系统发育图才有顶点集 V(D)和边 uv,用 P(D) 表示。道德图产生于贝叶斯网络研究,与系统发育图相同。任何非循环数图 D,如果 G 是 P(D) 的诱导子图,且 D 没有从 G 外顶点到 G 内顶点的弧,则称为 G 的系统发育数图。G 的系统发育数 p(G) 是使 G 具有|V(D)∖V(G)|=r 的系统发育数图 D 的最小 r。本文将现有的计算具有少量三角形的连通图的系统发生数的定理整合为一个命题:对于最多包含两个三角形的图 G,|E(G)|-|V(G)|-2t(G)+d(G)+1≤p(G)≤|E(G)|-|V(G)|-t(G)+1,其中 t(G) 和 d(G) 分别表示 G 中的三角形数和菱形数。然后,我们将证明这些不等式对于有许多三角形的图形是成立的。在证明过程中,我们推导出一个有用的定理,该定理在推导各种有意义的结果中发挥了关键作用,其中包括一个回答 Wu 等人(2019)所提问题的定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信