Packing 2- and 3-stars into (2,3)-regular graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Wenying Xi , Wensong Lin , Yuquan Lin
{"title":"Packing 2- and 3-stars into (2,3)-regular graphs","authors":"Wenying Xi ,&nbsp;Wensong Lin ,&nbsp;Yuquan Lin","doi":"10.1016/j.dam.2024.10.022","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>i</mi></math></span> be a positive integer, an <span><math><mi>i</mi></math></span>-star denoted by <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub></math></span>. An <span><math><mrow><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></mrow></math></span>-packing of a graph <span><math><mi>G</mi></math></span> is a collection of vertex-disjoint subgraphs of <span><math><mi>G</mi></math></span> in which each subgraph is a 2-star or a 3-star. The maximum <span><math><mrow><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></mrow></math></span>-packing problem is to find an <span><math><mrow><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></mrow></math></span>-packing of a given graph containing the maximum number of vertices. The <span><math><mrow><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></mrow></math></span>-factor problem is to answer whether there is an <span><math><mrow><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></mrow></math></span>-packing containing all vertices of the given graph. The <span><math><mrow><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></mrow></math></span>-factor problem is NP-complete in cubic graphs. In this paper we design a quadratic-time algorithm for finding an <span><math><mrow><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></mrow></math></span>-packing of <span><math><mi>G</mi></math></span> that covers at least thirteen-sixteenths of its vertices with only a few exceptions. We also present some <span><math><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow></math></span>-regular graphs with their maximum <span><math><mrow><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></mrow></math></span>-packings covering exactly thirteen-sixteenths of their vertices.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"361 ","pages":"Pages 440-452"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004530","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let i be a positive integer, an i-star denoted by Si is a complete bipartite graph K1,i. An {S2,S3}-packing of a graph G is a collection of vertex-disjoint subgraphs of G in which each subgraph is a 2-star or a 3-star. The maximum {S2,S3}-packing problem is to find an {S2,S3}-packing of a given graph containing the maximum number of vertices. The {S2,S3}-factor problem is to answer whether there is an {S2,S3}-packing containing all vertices of the given graph. The {S2,S3}-factor problem is NP-complete in cubic graphs. In this paper we design a quadratic-time algorithm for finding an {S2,S3}-packing of G that covers at least thirteen-sixteenths of its vertices with only a few exceptions. We also present some (2,3)-regular graphs with their maximum {S2,S3}-packings covering exactly thirteen-sixteenths of their vertices.
将 2 星和 3 星打包到 (2,3) 不规则图中
让 i 为正整数,用 Si 表示的 i-star 是一个完整的双方形图 K1,i。图 G 的 {S2,S3} 组合是 G 的顶点相交子图的集合,其中每个子图都是 2-star 或 3-star。最大{S2,S3}堆积问题是指找到一个包含最多顶点数的给定图的{S2,S3}堆积。{S2,S3}因子问题是回答是否存在包含给定图形所有顶点的{S2,S3}堆积。在立方图中,{S2,S3} 因子问题是 NP-完全的。在本文中,我们设计了一种二次方时间算法,用于找到 G 的 {S2,S3} 组合,该组合至少覆盖了其十六分之三的顶点,只有少数例外。我们还介绍了一些 (2,3) 不规则图,它们的最大 {S2,S3} 组合正好覆盖了其十六分之十三的顶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信