Rainbow short linear forests in edge-colored complete graph

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Menglu He, Zemin Jin
{"title":"Rainbow short linear forests in edge-colored complete graph","authors":"Menglu He,&nbsp;Zemin Jin","doi":"10.1016/j.dam.2024.11.002","DOIUrl":null,"url":null,"abstract":"<div><div>An edge-colored graph <span><math><mi>G</mi></math></span> is called rainbow if no two edges of <span><math><mi>G</mi></math></span> have the same color. For a graph <span><math><mi>G</mi></math></span> and a subgraph <span><math><mrow><mi>H</mi><mo>⊆</mo><mi>G</mi></mrow></math></span>, the anti-Ramsey number <span><math><mrow><mi>A</mi><mi>R</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> is the maximum number of colors in an edge-coloring of <span><math><mi>G</mi></math></span> such that <span><math><mi>G</mi></math></span> contains no rainbow copy of <span><math><mi>H</mi></math></span>. Recently, the anti-Ramsey problem for disjoint union of graphs received much attention. In particular, several researchers focused on the problem for graphs consisting of small components. In this paper, we continue the work in this direction. We refine the bound and obtain the precise value of <span><math><mrow><mi>A</mi><mi>R</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>∪</mo><mi>t</mi><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn><mi>t</mi><mo>+</mo><mn>3</mn></mrow></math></span>. Additionally, we determine the value of <span><math><mrow><mi>A</mi><mi>R</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mn>2</mn><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>∪</mo><mi>t</mi><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> for any integers <span><math><mrow><mi>t</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn><mi>t</mi><mo>+</mo><mn>7</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"361 ","pages":"Pages 523-536"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004712","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

An edge-colored graph G is called rainbow if no two edges of G have the same color. For a graph G and a subgraph HG, the anti-Ramsey number AR(G,H) is the maximum number of colors in an edge-coloring of G such that G contains no rainbow copy of H. Recently, the anti-Ramsey problem for disjoint union of graphs received much attention. In particular, several researchers focused on the problem for graphs consisting of small components. In this paper, we continue the work in this direction. We refine the bound and obtain the precise value of AR(Kn,P3tP2) for all n2t+3. Additionally, we determine the value of AR(Kn,2P3tP2) for any integers t1 and n2t+7.
边色完整图中的彩虹短线性森林
如果一个边着色的图 G 没有两条边的颜色相同,则称其为彩虹图。对于图 G 和子图 H⊆G,反拉姆齐数 AR(G,H) 是指在 G 的边染色中,G 不包含 H 的彩虹副本的最大颜色数。特别是,一些研究人员重点研究了由小分量组成的图的反拉姆齐问题。在本文中,我们将继续这一方向的研究。我们完善了边界,并得到了所有 n≥2t+3 时 AR(Kn,P3∪tP2) 的精确值。此外,我们还确定了任意整数 t≥1 和 n≥2t+7 时的 AR(Kn,2P3∪tP2) 值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信