{"title":"Multiplicity of signless Laplacian eigenvalue 2 of a connected graph with a perfect matching","authors":"Jinxing Zhao , Xiaoxiang Yu","doi":"10.1016/j.dam.2024.11.003","DOIUrl":null,"url":null,"abstract":"<div><div>The signless Laplacian matrix of a graph <span><math><mi>G</mi></math></span> is defined as <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the degree-diagonal matrix of <span><math><mi>G</mi></math></span> and <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the adjacency matrix of <span><math><mi>G</mi></math></span>. The multiplicity of an eigenvalue <span><math><mi>μ</mi></math></span> of <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is denoted by <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>Q</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow></mrow></math></span>. Let <span><math><mrow><mi>G</mi><mo>=</mo><mi>C</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> be a unicyclic graph with a perfect matching, where <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a rooted tree attached at the vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> of the cycle <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>. It is proved that <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> has 2 as an eigenvalue if and only if <span><math><mrow><mi>g</mi><mo>+</mo><mi>t</mi></mrow></math></span> is divisible by 4, where <span><math><mi>t</mi></math></span> is the number of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> of even orders. Another main result of this article gives a characterization for a connected graph <span><math><mi>G</mi></math></span> with a perfect matching such that <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>Q</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo></mrow><mo>=</mo><mi>θ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>, where <span><math><mrow><mi>θ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>−</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> is the cyclomatic number of <span><math><mi>G</mi></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"361 ","pages":"Pages 480-486"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004724","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The signless Laplacian matrix of a graph is defined as , where is the degree-diagonal matrix of and is the adjacency matrix of . The multiplicity of an eigenvalue of is denoted by . Let be a unicyclic graph with a perfect matching, where is a rooted tree attached at the vertex of the cycle . It is proved that has 2 as an eigenvalue if and only if is divisible by 4, where is the number of of even orders. Another main result of this article gives a characterization for a connected graph with a perfect matching such that , where is the cyclomatic number of .
图 G 的无符号拉普拉斯矩阵定义为 Q(G)=D(G)+A(G),其中 D(G) 是 G 的阶对角矩阵,A(G) 是 G 的邻接矩阵。Q(G) 的特征值 μ 的多重性用 mQ(G,μ) 表示。设 G=C(T1,...Tg) 是一个完美匹配的单环图,其中 Ti 是连接在循环 Cg 的顶点 vi 上的有根树。本文证明,当且仅当 g+t 能被 4 整除时,Q(G) 的特征值为 2,其中 t 是偶数阶 Ti 的个数。本文的另一个主要结果给出了具有完美匹配的连通图 G 的特征,即 mQ(G,2)=θ(G)+1,其中θ(G)=|E(G)|-|V(G)|+1 是 G 的循环数。
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.