On the minimum spectral radius of graphs with given order and dissociation number

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Jing Zhao , Huiqing Liu , Jin Xiong
{"title":"On the minimum spectral radius of graphs with given order and dissociation number","authors":"Jing Zhao ,&nbsp;Huiqing Liu ,&nbsp;Jin Xiong","doi":"10.1016/j.dam.2024.11.014","DOIUrl":null,"url":null,"abstract":"<div><div>A dissociation set in a graph <span><math><mi>G</mi></math></span> is a set of vertices that induces a subgraph of maximum degree at most 1. The cardinality of a maximum dissociation set in <span><math><mi>G</mi></math></span> is called the dissociation number of <span><math><mi>G</mi></math></span>. Huang et al. determined the graphs with the minimum spectral radius among all connected graphs with given order <span><math><mi>n</mi></math></span> and dissociation number <span><math><mrow><mn>2</mn><mo>,</mo><mrow><mo>⌈</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span>, respectively. In this paper, we characterize the graphs that attain the minimum spectral radius among all connected graphs with given order <span><math><mi>n</mi></math></span> and dissociation number <span><math><mrow><mrow><mo>⌈</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"361 ","pages":"Pages 487-501"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004840","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A dissociation set in a graph G is a set of vertices that induces a subgraph of maximum degree at most 1. The cardinality of a maximum dissociation set in G is called the dissociation number of G. Huang et al. determined the graphs with the minimum spectral radius among all connected graphs with given order n and dissociation number 2,2n3,n2,n1, respectively. In this paper, we characterize the graphs that attain the minimum spectral radius among all connected graphs with given order n and dissociation number 2n31.
关于给定阶数和解离数的图形的最小谱半径
图 G 中的解离集是引起最大阶数至多为 1 的子图的顶点集合。在本文中,我们将描述在给定阶数 n 和解离数⌈2n3⌉-1 的所有连通图中达到最小谱半径的图的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信