Role of Mitochondrial Iron Uptake in Acetaminophen Hepatotoxicity.

Livers Pub Date : 2024-09-01 Epub Date: 2024-07-30 DOI:10.3390/livers4030024
Jiangting Hu, Anna-Liisa Nieminen, Zhi Zhong, John J Lemasters
{"title":"Role of Mitochondrial Iron Uptake in Acetaminophen Hepatotoxicity.","authors":"Jiangting Hu, Anna-Liisa Nieminen, Zhi Zhong, John J Lemasters","doi":"10.3390/livers4030024","DOIUrl":null,"url":null,"abstract":"<p><p>Overdose of acetaminophen (APAP) produces fulminant hepatic necrosis. The underlying mechanism of APAP hepatotoxicity involves mitochondrial dysfunction, including mitochondrial oxidant stress and the onset of mitochondrial permeability transition (MPT). Reactive oxygen species (ROS) play an important role in APAP-induced hepatotoxicity, and iron is a critical catalyst for ROS formation. This review summarizes the role of mitochondrial ROS formation in APAP hepatotoxicity and further focuses on the role of iron. Normally, hepatocytes take up Fe<sup>3+</sup>-transferrin bound to transferrin receptors via endocytosis. Concentrated into lysosomes, the controlled release of iron is required for the mitochondrial biosynthesis of heme and non-heme iron-sulfur clusters. After APAP overdose, the toxic metabolite, NAPQI, damages lysosomes, causing excess iron release and the mitochondrial uptake of Fe<sup>2+</sup> by the mitochondrial calcium uniporter (MCU). NAPQI also inhibits mitochondrial respiration to promote ROS formation, including H<sub>2</sub>O<sub>2</sub>, with which Fe<sup>2+</sup> reacts to form highly reactive •OH through the Fenton reaction. •OH, in turn, causes lipid peroxidation, the formation of toxic aldehydes, induction of the MPT, and ultimately, cell death. Fe<sup>2+</sup> also facilitates protein nitration. Targeting pathways of mitochondrial iron movement and consequent iron-dependent mitochondrial ROS formation is a promising strategy to intervene against APAP hepatotoxicity in a clinical setting.</p>","PeriodicalId":74083,"journal":{"name":"Livers","volume":"4 3","pages":"333-351"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11567147/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Livers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/livers4030024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Overdose of acetaminophen (APAP) produces fulminant hepatic necrosis. The underlying mechanism of APAP hepatotoxicity involves mitochondrial dysfunction, including mitochondrial oxidant stress and the onset of mitochondrial permeability transition (MPT). Reactive oxygen species (ROS) play an important role in APAP-induced hepatotoxicity, and iron is a critical catalyst for ROS formation. This review summarizes the role of mitochondrial ROS formation in APAP hepatotoxicity and further focuses on the role of iron. Normally, hepatocytes take up Fe3+-transferrin bound to transferrin receptors via endocytosis. Concentrated into lysosomes, the controlled release of iron is required for the mitochondrial biosynthesis of heme and non-heme iron-sulfur clusters. After APAP overdose, the toxic metabolite, NAPQI, damages lysosomes, causing excess iron release and the mitochondrial uptake of Fe2+ by the mitochondrial calcium uniporter (MCU). NAPQI also inhibits mitochondrial respiration to promote ROS formation, including H2O2, with which Fe2+ reacts to form highly reactive •OH through the Fenton reaction. •OH, in turn, causes lipid peroxidation, the formation of toxic aldehydes, induction of the MPT, and ultimately, cell death. Fe2+ also facilitates protein nitration. Targeting pathways of mitochondrial iron movement and consequent iron-dependent mitochondrial ROS formation is a promising strategy to intervene against APAP hepatotoxicity in a clinical setting.

线粒体铁吸收在对乙酰氨基酚肝毒性中的作用
过量服用对乙酰氨基酚(APAP)会产生暴发性肝坏死。对乙酰氨基酚肝毒性的基本机制涉及线粒体功能障碍,包括线粒体氧化应激和线粒体通透性转换(MPT)的发生。活性氧(ROS)在 APAP 诱导的肝毒性中起着重要作用,而铁是 ROS 形成的关键催化剂。本综述总结了线粒体 ROS 形成在 APAP 肝毒性中的作用,并进一步关注铁的作用。正常情况下,肝细胞通过内吞作用吸收与转铁蛋白受体结合的 Fe3+-转铁蛋白。铁被集中到溶酶体中,线粒体生物合成血红素和非血红素铁硫簇需要铁的控制释放。过量服用 APAP 后,毒性代谢物 NAPQI 会破坏溶酶体,导致铁释放过量,线粒体钙离子单向传输器(MCU)会吸收 Fe2+。NAPQI 还会抑制线粒体呼吸,从而促进 ROS(包括 H2O2)的形成,Fe2+ 与 H2O2 通过 Fenton 反应生成高活性的 -OH。反过来,-OH 又会导致脂质过氧化,形成有毒的醛,诱导 MPT,最终导致细胞死亡。Fe2+ 还能促进蛋白质硝化。针对线粒体铁移动的途径以及随之而来的铁依赖性线粒体 ROS 的形成,是在临床环境中干预 APAP 肝毒性的一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信