Anastasiia Holovchak, Helen McIlleron, Paolo Denti, Michael Schomaker
{"title":"Recoverability of causal effects under presence of missing data: a longitudinal case study.","authors":"Anastasiia Holovchak, Helen McIlleron, Paolo Denti, Michael Schomaker","doi":"10.1093/biostatistics/kxae044","DOIUrl":null,"url":null,"abstract":"<p><p>Missing data in multiple variables is a common issue. We investigate the applicability of the framework of graphical models for handling missing data to a complex longitudinal pharmacological study of children with HIV treated with an efavirenz-based regimen as part of the CHAPAS-3 trial. Specifically, we examine whether the causal effects of interest, defined through static interventions on multiple continuous variables, can be recovered (estimated consistently) from the available data only. So far, no general algorithms are available to decide on recoverability, and decisions have to be made on a case-by-case basis. We emphasize the sensitivity of recoverability to even the smallest changes in the graph structure, and present recoverability results for three plausible missingness-directed acyclic graphs (m-DAGs) in the CHAPAS-3 study, informed by clinical knowledge. Furthermore, we propose the concept of a \"closed missingness mechanism\": if missing data are generated based on this mechanism, an available case analysis is admissible for consistent estimation of any statistical or causal estimand, even if data are missing not at random. Both simulations and theoretical considerations demonstrate how, in the assumed MNAR setting of our study, a complete or available case analysis can be superior to multiple imputation, and estimation results vary depending on the assumed missingness DAG. Our analyses demonstrate an innovative application of missingness DAGs to complex longitudinal real-world data, while highlighting the sensitivity of the results with respect to the assumed causal model.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxae044","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Missing data in multiple variables is a common issue. We investigate the applicability of the framework of graphical models for handling missing data to a complex longitudinal pharmacological study of children with HIV treated with an efavirenz-based regimen as part of the CHAPAS-3 trial. Specifically, we examine whether the causal effects of interest, defined through static interventions on multiple continuous variables, can be recovered (estimated consistently) from the available data only. So far, no general algorithms are available to decide on recoverability, and decisions have to be made on a case-by-case basis. We emphasize the sensitivity of recoverability to even the smallest changes in the graph structure, and present recoverability results for three plausible missingness-directed acyclic graphs (m-DAGs) in the CHAPAS-3 study, informed by clinical knowledge. Furthermore, we propose the concept of a "closed missingness mechanism": if missing data are generated based on this mechanism, an available case analysis is admissible for consistent estimation of any statistical or causal estimand, even if data are missing not at random. Both simulations and theoretical considerations demonstrate how, in the assumed MNAR setting of our study, a complete or available case analysis can be superior to multiple imputation, and estimation results vary depending on the assumed missingness DAG. Our analyses demonstrate an innovative application of missingness DAGs to complex longitudinal real-world data, while highlighting the sensitivity of the results with respect to the assumed causal model.
多个变量的缺失数据是一个常见问题。我们研究了处理缺失数据的图形模型框架在一项复杂的纵向药理学研究中的适用性,该研究是 CHAPAS-3 试验的一部分,研究对象是接受以依非韦伦为基础的方案治疗的 HIV 感染儿童。具体来说,我们研究了通过对多个连续变量的静态干预所确定的相关因果效应是否可以仅从现有数据中恢复(一致估计)。到目前为止,还没有可用来决定可恢复性的通用算法,必须根据具体情况做出决定。我们强调了可恢复性对图结构中最小变化的敏感性,并介绍了 CHAPAS-3 研究中三个可信的缺失指向无环图(m-DAG)的可恢复性结果,这些结果是以临床知识为基础的。此外,我们还提出了 "封闭缺失机制 "的概念:如果缺失数据是基于这种机制产生的,那么即使数据不是随机缺失,也可以通过可用的病例分析对任何统计或因果估计进行一致的估计。模拟和理论考虑都表明,在我们研究的假定 MNAR 设置中,完整或可用案例分析如何优于多重估算,估算结果因假定的缺失 DAG 而异。我们的分析展示了缺失 DAG 在复杂的纵向真实世界数据中的创新应用,同时强调了结果对假定因果模型的敏感性。
期刊介绍:
Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.