Joshua P Gill, Kathryn R DeLeo, K Adam Bohnert, Alyssa E Johnson
{"title":"Human <i>SVIP</i> is sufficient to stimulate tubular lysosomes and extend healthspan in well-fed <i>Caenorhabditis elegans</i>.","authors":"Joshua P Gill, Kathryn R DeLeo, K Adam Bohnert, Alyssa E Johnson","doi":"10.17912/micropub.biology.001379","DOIUrl":null,"url":null,"abstract":"<p><p>Small VCP Interacting Protein (SVIP) is essential for maintaining a unique form of tubular lysosomes (TLs) in <i>Drosophila</i> . Although <i>Caenorhabditis elegans</i> do not have an annotated <i>SVIP</i> ortholog, expression of <i>Drosophila SVIP</i> in the <i>C. elegans</i> intestine induces TLs constitutively, increases autophagic activity, and extends healthspan. Here, we find that expression of the human ortholog of <i>SVIP</i> in the <i>C. elegans</i> gut causes similar physiological and phenotypic effects as <i>Drosophila SVIP</i> , albeit some effects were less pronounced. These results demonstrate that human <i>SVIP</i> can induce functional TLs in <i>C. elegans</i> but may be a weaker allele compared to <i>Drosophila SVIP</i> .</p>","PeriodicalId":74192,"journal":{"name":"microPublication biology","volume":"2024 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568451/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"microPublication biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17912/micropub.biology.001379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Small VCP Interacting Protein (SVIP) is essential for maintaining a unique form of tubular lysosomes (TLs) in Drosophila . Although Caenorhabditis elegans do not have an annotated SVIP ortholog, expression of Drosophila SVIP in the C. elegans intestine induces TLs constitutively, increases autophagic activity, and extends healthspan. Here, we find that expression of the human ortholog of SVIP in the C. elegans gut causes similar physiological and phenotypic effects as Drosophila SVIP , albeit some effects were less pronounced. These results demonstrate that human SVIP can induce functional TLs in C. elegans but may be a weaker allele compared to Drosophila SVIP .