{"title":"Deep learning based analysis of dynamic video ultrasonography for predicting cervical lymph node metastasis in papillary thyroid carcinoma.","authors":"Tingting Qian, Yahan Zhou, Jincao Yao, Chen Ni, Sohaib Asif, Chen Chen, Lujiao Lv, Di Ou, Dong Xu","doi":"10.1007/s12020-024-04091-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cervical lymph node metastasis (CLNM) is the most common form of thyroid cancer metastasis. Accurate preoperative CLNM diagnosis is of more importance in patients with papillary thyroid cancer (PTC). However, there is currently no unified methods to objectively predict CLNM risk from ultrasonography in PTC patients.This study aimed to develop a deep learning (DL) model to help clinicians more accurately determine the existence of CLNM risk in patients with PTC and then assist them with treatment decisions.</p><p><strong>Methods: </strong>Ultrasound dynamic videos of 388 patients with 717 thyroid nodules were retrospectively collected from Zhejiang Cancer Hospital between January 2020 and June 2022. Five deep learning (DL) models were investigated to examine its efficacy for predicting CLNM risks and their performances were also compared with those predicted using two-dimensional ultrasound static images.</p><p><strong>Results: </strong>In the testing dataset (n = 78), the DenseNet121 model trained on ultrasound dynamic videos outperformed the other four DL models as well as the DL model trained using the two-dimensional (2D) static images across all metrics. Specifically, using DenseNet121, the comparison between the 3D model and 2D model for all metrics are shown as below: AUROC: 0.903 versus 0.828, sensitivity: 0.877 versus 0.871, specificity: 0.865 versus 0.659.</p><p><strong>Conclusions: </strong>This study demonstrated that the DenseNet121 model has the greatest potential in distinguishing CLNM from non-CLNM in patients with PTC. Dynamic videos also offered more information about the disease states which have proven to be more efficient and robust in identifying CLNM compared to statis images.</p>","PeriodicalId":49211,"journal":{"name":"Endocrine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12020-024-04091-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cervical lymph node metastasis (CLNM) is the most common form of thyroid cancer metastasis. Accurate preoperative CLNM diagnosis is of more importance in patients with papillary thyroid cancer (PTC). However, there is currently no unified methods to objectively predict CLNM risk from ultrasonography in PTC patients.This study aimed to develop a deep learning (DL) model to help clinicians more accurately determine the existence of CLNM risk in patients with PTC and then assist them with treatment decisions.
Methods: Ultrasound dynamic videos of 388 patients with 717 thyroid nodules were retrospectively collected from Zhejiang Cancer Hospital between January 2020 and June 2022. Five deep learning (DL) models were investigated to examine its efficacy for predicting CLNM risks and their performances were also compared with those predicted using two-dimensional ultrasound static images.
Results: In the testing dataset (n = 78), the DenseNet121 model trained on ultrasound dynamic videos outperformed the other four DL models as well as the DL model trained using the two-dimensional (2D) static images across all metrics. Specifically, using DenseNet121, the comparison between the 3D model and 2D model for all metrics are shown as below: AUROC: 0.903 versus 0.828, sensitivity: 0.877 versus 0.871, specificity: 0.865 versus 0.659.
Conclusions: This study demonstrated that the DenseNet121 model has the greatest potential in distinguishing CLNM from non-CLNM in patients with PTC. Dynamic videos also offered more information about the disease states which have proven to be more efficient and robust in identifying CLNM compared to statis images.
期刊介绍:
Well-established as a major journal in today’s rapidly advancing experimental and clinical research areas, Endocrine publishes original articles devoted to basic (including molecular, cellular and physiological studies), translational and clinical research in all the different fields of endocrinology and metabolism. Articles will be accepted based on peer-reviews, priority, and editorial decision. Invited reviews, mini-reviews and viewpoints on relevant pathophysiological and clinical topics, as well as Editorials on articles appearing in the Journal, are published. Unsolicited Editorials will be evaluated by the editorial team. Outcomes of scientific meetings, as well as guidelines and position statements, may be submitted. The Journal also considers special feature articles in the field of endocrine genetics and epigenetics, as well as articles devoted to novel methods and techniques in endocrinology.
Endocrine covers controversial, clinical endocrine issues. Meta-analyses on endocrine and metabolic topics are also accepted. Descriptions of single clinical cases and/or small patients studies are not published unless of exceptional interest. However, reports of novel imaging studies and endocrine side effects in single patients may be considered. Research letters and letters to the editor related or unrelated to recently published articles can be submitted.
Endocrine covers leading topics in endocrinology such as neuroendocrinology, pituitary and hypothalamic peptides, thyroid physiological and clinical aspects, bone and mineral metabolism and osteoporosis, obesity, lipid and energy metabolism and food intake control, insulin, Type 1 and Type 2 diabetes, hormones of male and female reproduction, adrenal diseases pediatric and geriatric endocrinology, endocrine hypertension and endocrine oncology.